Showing 251 - 275 of 354 results
251.
Activation of EphB2 Forward Signaling Enhances Memory Consolidation.
Abstract:
EphB2 is involved in enhancing synaptic transmission and gene expression. To explore the roles of EphB2 in memory formation and enhancement, we used a photoactivatable EphB2 (optoEphB2) to activate EphB2 forward signaling in pyramidal neurons in lateral amygdala (LA). Photoactivation of optoEphB2 during fear conditioning, but not minutes afterward, enhanced long-term, but not short-term, auditory fear conditioning. Photoactivation of optoEphB2 during fear conditioning led to activation of the cAMP/Ca2+ responsive element binding (CREB) protein. Application of light to a kinase-dead optoEphB2 in LA did not lead to enhancement of long-term fear conditioning memory or to activation of CREB. Long-term, but not short-term, auditory fear conditioning memory was impaired in mice lacking EphB2 forward signaling (EphB2lacZ/lacZ). Activation of optoEphB2 in LA of EphB2lacZ/lacZ mice enhanced long-term fear conditioning memory. The present findings show that the level of EphB2 forward signaling activity during learning determines the strength of long-term memory consolidation.
252.
Filopodia Conduct Target Selection in Cortical Neurons Using Differences in Signal Kinetics of a Single Kinase.
Abstract:
Dendritic filopodia select synaptic partner axons by interviewing the cell surface of potential targets, but how filopodia decipher the complex pattern of adhesive and repulsive molecular cues to find appropriate contacts is unknown. Here, we demonstrate in cortical neurons that a single cue is sufficient for dendritic filopodia to reject or select specific axonal contacts for elaboration as synaptic sites. Super-resolution and live-cell imaging reveals that EphB2 is located in the tips of filopodia and at nascent synaptic sites. Surprisingly, a genetically encoded indicator of EphB kinase activity, unbiased classification, and a photoactivatable EphB2 reveal that simple differences in the kinetics of EphB kinase signaling at the tips of filopodia mediate the choice between retraction and synaptogenesis. This may enable individual filopodia to choose targets based on differences in the activation rate of a single tyrosine kinase, greatly simplifying the process of partner selection and suggesting a general principle.
253.
A green light-responsive system for the control of transgene expression in mammalian and plant cells.
Abstract:
The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors. Here, we describe the development of the first synthetic light-responsive system for the targeted control of gene expression in mammalian and plant cells that responds to the green range of the light spectrum in which plant photoreceptors have minimal activity. We first engineered a system based on the light-sensitive bacterial transcription factor CarH6 and its cognate DNA operator sequence CarO from Thermus thermophilus to control gene expression in mammalian cells. The system was functional in various mammalian cell lines, showing high induction (up to 350-fold) along with low leakiness, as well as high reversibility. We quantitatively described the systems characteristics by the development and experimental validation of a mathematical model. Finally, we transferred the system into A. thaliana protoplasts and demonstrated gene expression in response to green light. We expect that this system will provide new opportunities in applications based on synthetic gene networks and will open up perspectives for optogenetic studies in mammalian and plant cells.
254.
Analysis of the CaMKIIα and β splice-variant distribution among brain regions reveals isoform-specific differences in holoenzyme formation.
-
Cook, SG
-
Bourke, AM
-
O'Leary, H
-
Zaegel, V
-
Lasda, E
-
Mize-Berge, J
-
Quillinan, N
-
Tucker, CL
-
Coultrap, SJ
-
Herson, PS
-
Bayer, KU
Abstract:
Four CaMKII isoforms are encoded by distinct genes, and alternative splicing within the variable linker-region generates additional diversity. The α and β isoforms are largely brain-specific, where they mediate synaptic functions underlying learning, memory and cognition. Here, we determined the α and β splice-variant distribution among different mouse brain regions. Surprisingly, the nuclear variant αB was detected in all regions, and even dominated in hypothalamus and brain stem. For CaMKIIβ, the full-length variant dominated in most regions (with higher amounts of minor variants again seen in hypothalamus and brain stem). The mammalian but not fish CaMKIIβ gene lacks exon v3Nthat encodes the nuclear localization signal in αB, but contains three exons not found in the CaMKIIα gene (exons v1, v4, v5). While skipping of exons v1 and/or v5 generated the minor splice-variants β', βe and βe', essentially all transcripts contained exon v4. However, we instead detected another minor splice-variant (now termed βH), which lacks part of the hub domain that mediates formation of CaMKII holoenzymes. Surprisingly, in an optogenetic cellular assay of protein interactions, CaMKIIβH was impaired for binding to the β hub domain, but still bound CaMKIIα. This provides the first indication for isoform-specific differences in holoenzyme formation.
255.
Rewiring Calcium Signaling for Precise Transcriptional Reprogramming.
Abstract:
Tools capable of modulating gene expression in living organisms are very useful for interrogating the gene regulatory network and controlling biological processes. The catalytically inactive CRISPR/Cas9 (dCas9), when fused with repressive or activating effectors, functions as a versatile platform to reprogram gene transcription at targeted genomic loci. However, without temporal control, the application of these reprogramming tools will likely cause off-target effects and lack strict reversibility. To overcome this limitation, we report herein the development of a chemical or light-inducible transcriptional reprogramming device that combines photoswitchable genetically encoded calcium actuators with dCas9 to control gene expression. By fusing an engineered Ca2+-responsive NFAT fragment with dCas9 and transcriptional coactivators, we harness the power of light to achieve photoinducible transcriptional reprogramming in mammalian cells. This synthetic system (designated CaRROT) can also be used to document calcium-dependent activity in mammals after exposure to ligands or chemicals that would elicit calcium response inside cells.
256.
Near-infrared light-controlled gene expression and protein targeting in neurons and non-neuronal cells.
Abstract:
Near-infrared (NIR) light-inducible binding of bacterial phytochrome BphP1 to its engineered partner QPAS1 is used for optical protein regulation in mammalian cells. However, there are no data on the application of the BphP1-QPAS1 pair in cells derived from various mammalian tissues. Here, we tested functionality of two BphP1-QPAS1-based optogenetic tools, such as an NIR and blue light-sensing system for control of protein localization (iRIS) and an NIR light-sensing system for transcription activation (TA), in several cell types including cortical neurons. We found that the performance of these optogenetic tools often rely on physiological properties of a specific cell type, such as nuclear transport, which may limit applicability of blue light-sensitive component of iRIS. In contrast, the NIR-light-sensing part of iRIS performed well in all tested cell types. The TA system showed the best performance in HeLa, U-2 OS and HEK-293 cells. Small size of the QPAS1 component allows designing AAV viral particles, which were applied to deliver the TA system to neurons.
257.
Unique Roles of β-Arrestin in GPCR Trafficking Revealed by Photoinducible Dimerizers.
Abstract:
Intracellular trafficking of G protein-coupled receptors (GPCRs) controls their localization and degradation, which affects a cell's ability to adapt to extracellular stimuli. Although the perturbation of trafficking induces important diseases, these trafficking mechanisms are poorly understood. Herein, we demonstrate an optogenetic method using an optical dimerizer, cryptochrome (CRY) and its partner protein (CIB), to analyze the trafficking mechanisms of GPCRs and their regulatory proteins. Temporally controlling the interaction between β-arrestin and β2-adrenergic receptor (ADRB2) reveals that the duration of the β-arrestin-ADRB2 interaction determines the trafficking pathway of ADRB2. Remarkably, the phosphorylation of ADRB2 by G protein-coupled receptor kinases is unnecessary to trigger clathrin-mediated endocytosis, and β-arrestin interacting with unphosphorylated ADRB2 fails to activate mitogen-activated protein kinase (MAPK) signaling, in contrast to the ADRB2 agonist isoproterenol. Temporal control of β-arrestin-GPCR interactions will enable the investigation of the unique roles of β-arrestin and the mechanism by which it regulates β-arrestin-specific trafficking pathways of different GPCRs.
258.
Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP+ Reductase Systems Enables Genetically Encoded PhyB Optogenetics.
-
Kyriakakis, P
-
Catanho, M
-
Hoffner, N
-
Thavarajah, W
-
Jian-Yu, V
-
Chao, SS
-
Hsu, A
-
Pham, V
-
Naghavian, L
-
Dozier, LE
-
Patrick, G
-
Coleman, T
Abstract:
Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics, is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and for the first time, combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.
259.
Optogenetic Control of Endoplasmic Reticulum-Mitochondria Tethering.
Abstract:
The organelle interface emerges as a dynamic platform for a variety of biological responses. However, their study has been limited by the lack of tools to manipulate their occurrence in live cells spatiotemporally. Here, we report the development of a genetically encoded light-inducible tethering (LIT) system allowing the induction of contacts between endoplasmic reticulum (ER) and mitochondria, taking advantage of a pair of light-dependent heterodimerization called an iLID system. We demonstrate that the iLID-based LIT approach enables control of ER-mitochondria tethering with high spatiotemporal precision in various cell types including primary neurons, which will facilitate the functional study of ER-mitochondrial contacts.
260.
Time-gated detection of protein-protein interactions with transcriptional readout.
Abstract:
Transcriptional assays, such as yeast two-hybrid and TANGO, that convert transient protein-protein interactions (PPIs) into stable expression of transgenes are powerful tools for PPI discovery, screens, and analysis of cell populations. However, such assays often have high background and lose information about PPI dynamics. We have developed SPARK (Specific Protein Association tool giving transcriptional Readout with rapid Kinetics), in which proteolytic release of a membrane-tethered transcription factor (TF) requires both a PPI to deliver a protease proximal to its cleavage peptide and blue light to uncage the cleavage site. SPARK was used to detect 12 different PPIs in mammalian cells, with 5 min temporal resolution and signal ratios up to 37. By shifting the light window, we could reconstruct PPI time-courses. Combined with FACS, SPARK enabled 51 fold enrichment of PPI-positive over PPI-negative cells. Due to its high specificity and sensitivity, SPARK has the potential to advance PPI analysis and discovery.
261.
Coupling optogenetics and light-sheet microscopy, a method to study Wnt signaling during embryogenesis.
Abstract:
Optogenetics allows precise, fast and reversible intervention in biological processes. Light-sheet microscopy allows observation of the full course of Drosophila embryonic development from egg to larva. Bringing the two approaches together allows unparalleled precision into the temporal regulation of signaling pathways and cellular processes in vivo. To develop this method, we investigated the regulation of canonical Wnt signaling during anterior-posterior patterning of the Drosophila embryonic epidermis. Cryptochrome 2 (CRY2) from Arabidopsis Thaliana was fused to mCherry fluorescent protein and Drosophila β-catenin to form an easy to visualize optogenetic switch. Blue light illumination caused oligomerization of the fusion protein and inhibited downstream Wnt signaling in vitro and in vivo. Temporal inactivation of β-catenin confirmed that Wnt signaling is required not only for Drosophila pattern formation, but also for maintenance later in development. We anticipate that this method will be easily extendable to other developmental signaling pathways and many other experimental systems.
262.
Optogenetic activation of EphB2 receptor in dendrites induced actin polymerization by activating Arg kinase.
Abstract:
Erythropoietin-producing hepatocellular (Eph) receptors regulate a wide array of developmental processes by responding to cell-cell contacts. EphB2 is well-expressed in brain and known to be important for dendritic spine development, as well as for the maintenance of the synapses, although the mechanisms of these functions have not been fully understood. Here we studied EphB2's functions in hippocampal neurons with an optogenetic approach, which allows us to specify spatial regions of signal activation and monitor in real-time the consequences of signal activation. We designed and constructed OptoEphB2, a genetically encoded photoactivatable EphB2. Photoactivation of OptoEphB2 in fibroblast cells induced receptor phosphorylation and resulted in cell rounding - a well-known cellular response to EphB2 activation. In contrast, local activation of OptoEphb2 in dendrites of hippocampal neurons induces rapid actin polymerization, resulting dynamic dendritic filopodial growth. Inhibition of Rac1 and CDC42 did not abolish OptoEphB2-induced actin polymerization. Instead, we identified Abelson Tyrosine-Protein Kinase 2 (Abl2/Arg) as a necessary effector in OptoEphB2-induced filopodia growth in dendrites. These findings provided new mechanistic insight into EphB2's role in neural development and demonstrated the advantage of OptoEphB as a new tool for studying EphB signaling.
263.
Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase.
Abstract:
Although the cAMP-dependent protein kinase (PKA) is ubiquitously expressed, it is sequestered at specific subcellular locations throughout the cell, thereby resulting in compartmentalized cellular signaling that triggers site-specific behavioral phenotypes. We developed a three-step engineering strategy to construct an optogenetic PKA (optoPKA) and demonstrated that, upon illumination, optoPKA migrates to specified intracellular sites. Furthermore, we designed intracellular spatially segregated reporters of PKA activity and confirmed that optoPKA phosphorylates these reporters in a light-dependent fashion. Finally, proteomics experiments reveal that light activation of optoPKA results in the phosphorylation of known endogenous PKA substrates as well as potential novel substrates.
264.
Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling.
Abstract:
Optogenetics is a powerful tool to precisely manipulate cell signaling in space and time. For example, protein activity can be regulated by several light-induced dimerization (LID) systems. Among them, the phytochrome B (PhyB)-phytochrome-interacting factor (PIF) system is the only available LID system controlled by red and far-red lights. However, the PhyB-PIF system requires phycocyanobilin (PCB) or phytochromobilin as a chromophore, which must be artificially added to mammalian cells. Here, we report an expression vector that coexpresses HO1 and PcyA with Ferredoxin and Ferredoxin-NADP+ reductase for the efficient synthesis of PCB in the mitochondria of mammalian cells. An even higher intracellular PCB concentration was achieved by the depletion of biliverdin reductase A, which degrades PCB. The PCB synthesis and PhyB-PIF systems allowed us to optogenetically regulate intracellular signaling without any external supply of chromophores. Thus, we have provided a practical method for developing a fully genetically encoded PhyB-PIF system, which paves the way for its application to a living animal.
265.
Optogenetic control of focal adhesion kinase signaling.
Abstract:
Focal adhesion kinase (FAK) integrates signaling from integrins, growth factor receptors and mechanical stress to control cell adhesion, motility, survival and proliferation. Here, we developed a single-component, photo-activatable FAK, termed optoFAK, by using blue light-induced oligomerization of cryptochrome 2 (CRY2) to activate FAK-CRY2 fusion proteins. OptoFAK functions uncoupled from physiological stimuli and activates downstream signaling rapidly and reversibly upon blue light exposure. OptoFAK stimulates SRC creating a positive feedback loop on FAK activation, facilitating phosphorylation of paxillin and p130Cas in adherent cells. In detached cells or in mechanically stressed adherent cells, optoFAK is autophosphorylated upon exposure to blue light, however, downstream signaling is hampered indicating that the accessibility to these substrates is disturbed. OptoFAK may prove to be a useful tool to study the biological function of FAK in growth factor and integrin signaling, tension-mediated focal adhesion maturation or anoikis and could additionally serve as test system for kinase inhibitors.
266.
Optimized light-inducible transcription in mammalian cells using Flavin Kelch-repeat F-box1/GIGANTEA and CRY2/CIB1.
Abstract:
Light-inducible systems allow spatiotemporal control of a variety of biological activities. Here, we report newly optimized optogenetic tools to induce transcription with light in mammalian cells, using the Arabidopsis photoreceptor Flavin Kelch-repeat F-box 1 (FKF1) and its binding partner GIGANTEA (GI) as well as CRY2/CIB1. By combining the mutagenesis of FKF1 with the optimization of a split FKF1/GI dimerized Gal4-VP16 transcriptional system, we identified constructs enabling significantly improved light-triggered transcriptional induction. In addition, we have improved the CRY2/CIB1-based light-inducible transcription with split construct optimization. The improvements regarding the FKF1/GI- and CRY2/CIB1-based systems will be widely applicable for the light-dependent control of transcription in mammalian cells.
267.
A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription.
Abstract:
Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.
268.
Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool.
Abstract:
Cyclic nucleotide signaling pathway plays a significant role in various biological processes such as cell growth, transcription, inflammation, in microbial pathogenesis, etc. Modulation of cyclic nucleotide levels by optogenetic tools has overcome certain limitations of studying transduction cascade by pharmacological agents and has allowed several ways to modulate biological processes in a spatiotemporal manner. Here, we have shown the optogenetic modulation of the cyclooxygenase 2 (Cox-2) gene expression and their downstream effector molecule (PGE2) in HEK-293T cells and the development process of Dictyostelium discoideum via modulating the cyclic nucleotide (cAMP) signaling pathway utilizing photoactivated adenylyl cyclases (PACs) as an optogenetic tool. Light-induced activation of PACs in HEK-293T cells increases the cAMP level that leads to activation of cAMP response element-binding protein (CREB) transcription factor and further upregulates downstream Cox-2 gene expression and their downstream effector molecule prostaglandin E2. In D. discoideum, the light-regulated increase in cAMP level affects the starvation-induced developmental process. These PACs could modulate the cAMP levels in a light-dependent manner and have a potential to control gene expression and their downstream effector molecules with varying magnitude. It would enable one to utilize PAC as a tool to decipher cyclic nucleotide mediated signaling pathway regulations and their mechanism.
269.
Understanding CRY2 interactions for optical control of intracellular signaling.
Abstract:
Arabidopsis cryptochrome 2 (CRY2) can simultaneously undergo light-dependent CRY2-CRY2 homo-oligomerization and CRY2-CIB1 hetero-dimerization, both of which have been widely used to optically control intracellular processes. Applications using CRY2-CIB1 interaction desire minimal CRY2 homo-oligomerization to avoid unintended complications, while those utilizing CRY2-CRY2 interaction prefer robust homo-oligomerization. However, selecting the type of CRY2 interaction has not been possible as the molecular mechanisms underlying CRY2 interactions are unknown. Here we report CRY2-CIB1 and CRY2-CRY2 interactions are governed by well-separated protein interfaces at the two termini of CRY2. N-terminal charges are critical for CRY2-CIB1 interaction. Moreover, two C-terminal charges impact CRY2 homo-oligomerization, with positive charges facilitating oligomerization and negative charges inhibiting it. By engineering C-terminal charges, we develop CRY2high and CRY2low with elevated or suppressed oligomerization respectively, which we use to tune the levels of Raf/MEK/ERK signaling. These results contribute to our understanding of the mechanisms underlying light-induced CRY2 interactions and enhance the controllability of CRY2-based optogenetic systems.Cryptochrome 2 (CRY2) can form light-regulated CRY2-CRY2 homo-oligomers or CRY2-CIB1 hetero-dimers, but modulating these interactions is difficult owing to the lack of interaction mechanism. Here the authors identify the interactions facilitating homo-oligomers and introduce mutations to create low and high oligomerization versions.
270.
CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation.
Abstract:
Our improved CRISPR-Cas9-based photoactivatable transcription systems, CPTS2.0 and Split-CPTS2.0, enable high blue-light-inducible activation of endogenous target genes in various human cell lines. We achieved reversible activation of target genes with CPTS2.0 and induced neuronal differentiation in induced pluripotent stem cells (iPSCs) by upregulating NEUROD1 with Split-CPTS2.0.
271.
Light-Responsive Promoters.
Abstract:
Recent advances in the development of light-inducible transgene expression systems have overcome many inherent drawbacks of conventional chemically regulated systems. The latest generation of those light-regulated systems that are specifically responsive to different wavelengths allows spatiotemporal control of gene expression in a so far unprecedented manner.In this chapter, we first describe the available light-inducible gene expression systems compatible with mammalian cells and explain their underlying mechanisms. Afterward, we give a detailed protocol for the implementation of a UVB light-inducible expression system in mammalian cells.
272.
An Engineered Optogenetic Switch for Spatiotemporal Control of Gene Expression, Cell Differentiation, and Tissue Morphogenesis.
Abstract:
The precise spatial and temporal control of gene expression, cell differentiation, and tissue morphogenesis has widespread application in regenerative medicine and the study of tissue development. In this work, we applied optogenetics to control cell differentiation and new tissue formation. Specifically, we engineered an optogenetic "on" switch that provides permanent transgene expression following a transient dose of blue light illumination. To demonstrate its utility in controlling cell differentiation and reprogramming, we incorporated an engineered form of the master myogenic factor MyoD into this system in multipotent cells. Illumination of cells with blue light activated myogenic differentiation, including upregulation of myogenic markers and fusion into multinucleated myotubes. Cell differentiation was spatially patterned by illumination of cell cultures through a photomask. To demonstrate the application of the system to controlling in vivo tissue development, the light inducible switch was used to control the expression of VEGF and angiopoietin-1, which induced angiogenic sprouting in a mouse dorsal window chamber model. Live intravital microscopy showed illumination-dependent increases in blood-perfused microvasculature. This optogenetic switch is broadly useful for applications in which sustained and patterned gene expression is desired following transient induction, including tissue engineering, gene therapy, synthetic biology, and fundamental studies of morphogenesis.
273.
A calcium- and light-gated switch to induce gene expression in activated neurons.
Abstract:
Despite recent advances in optogenetics, it remains challenging to manipulate gene expression in specific populations of neurons. We present a dual-protein switch system, Cal-Light, that translates neuronal-activity-mediated calcium signaling into gene expression in a light-dependent manner. In cultured neurons and brain slices, we show that Cal-Light drives expression of the reporter EGFP with high spatiotemporal resolution only in the presence of both blue light and calcium. Delivery of the Cal-Light components to the motor cortex of mice by viral vectors labels a subset of excitatory and inhibitory neurons related to learned lever-pressing behavior. By using Cal-Light to drive expression of the inhibitory receptor halorhodopsin (eNpHR), which responds to yellow light, we temporarily inhibit the lever-pressing behavior, confirming that the labeled neurons mediate the behavior. Thus, Cal-Light enables dissection of neural circuits underlying complex mammalian behaviors with high spatiotemporal precision.
274.
A light- and calcium-gated transcription factor for imaging and manipulating activated neurons.
Abstract:
Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high- to low-calcium signal ratio of 10 after 10 min of stimulation. Opsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor-activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium.
275.
A simple optogenetic MAPK inhibitor design reveals resonance between transcription-regulating circuitry and temporally-encoded inputs.
Abstract:
Engineering light-sensitive protein regulators has been a tremendous multidisciplinary challenge. Optogenetic regulators of MAPKs, central nodes of cellular regulation, have not previously been described. Here we present OptoJNKi, a light-regulated JNK inhibitor based on the AsLOV2 light-sensor domain using the ubiquitous FMN chromophore. OptoJNKi gene-transfer allows optogenetic applications, whereas protein delivery allows optopharmacology. Development of OptoJNKi suggests a design principle for other optically regulated inhibitors. From this, we generate Optop38i, which inhibits p38MAPK in intact illuminated cells. Neurons are known for interpreting temporally-encoded inputs via interplay between ion channels, membrane potential and intracellular calcium. However, the consequences of temporal variation of JNK-regulating trophic inputs, potentially resulting from synaptic activity and reversible cellular protrusions, on downstream targets are unknown. Using OptoJNKi, we reveal maximal regulation of c-Jun transactivation can occur at unexpectedly slow periodicities of inhibition depending on the inhibitor's subcellular location. This provides evidence for resonance in metazoan JNK-signalling circuits.