Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 251 - 275 of 1565 results
251.

Spatiotemporal, optogenetic control of gene expression in organoids.

blue CRY2/CIB1 Magnets HEK293T human IPSCs Endogenous gene expression Nucleic acid editing
Nat Methods, 21 Sep 2023 DOI: 10.1038/s41592-023-01986-w Link to full text
Abstract: Organoids derived from stem cells have become an increasingly important tool for studying human development and modeling disease. However, methods are still needed to control and study spatiotemporal patterns of gene expression in organoids. Here we combined optogenetics and gene perturbation technologies to activate or knock-down RNA of target genes in programmable spatiotemporal patterns. To illustrate the usefulness of our approach, we locally activated Sonic Hedgehog (SHH) signaling in an organoid model for human neurodevelopment. Spatial and single-cell transcriptomic analyses showed that this local induction was sufficient to generate stereotypically patterned organoids and revealed new insights into SHH's contribution to gene regulation in neurodevelopment. With this study, we propose optogenetic perturbations in combination with spatial transcriptomics as a powerful technology to reprogram and study cell fates and tissue patterning in organoids.
252.

CaaX-motif-adjacent residues influence G protein gamma (Gγ) prenylation under suboptimal conditions.

blue iLID HeLa Immediate control of second messengers
J Biol Chem, 20 Sep 2023 DOI: 10.1016/j.jbc.2023.105269 Link to full text
Abstract: Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation. Pharmacological inhibition of the lipid synthesis pathway by statins is a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential inhibition. We examined the prenylation of carboxy-terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to prenylation and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide, statin sensitivity, and extent of prenylation. Our results also show a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings indicate a plausible mechanism allowing for statins to differentially perturb heterotrimeric G protein signaling in cells depending on their Gγ-subtype composition. Our results may also provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.
253.

ActuAtor, a Listeria-inspired molecular tool for physical manipulation of intracellular organizations through de novo actin polymerization.

blue iLID U-2 OS Control of cytoskeleton / cell motility / cell shape
Cell Rep, 20 Sep 2023 DOI: 10.1016/j.celrep.2023.113089 Link to full text
Abstract: Form and function are often interdependent throughout biology. Inside cells, mitochondria have particularly attracted attention since both their morphology and functionality are altered under pathophysiological conditions. However, directly assessing their causal relationship has been beyond reach due to the limitations of manipulating mitochondrial morphology in a physiologically relevant manner. By engineering a bacterial actin regulator, ActA, we developed tools termed "ActuAtor" that inducibly trigger actin polymerization at arbitrary subcellular locations. The ActuAtor-mediated actin polymerization drives striking deformation and/or movement of target organelles, including mitochondria, Golgi apparatus, and nucleus. Notably, ActuAtor operation also disperses non-membrane-bound entities such as stress granules. We then implemented ActuAtor in functional assays, uncovering the physically fragmented mitochondria being slightly more susceptible to degradation, while none of the organelle functions tested are morphology dependent. The modular and genetically encoded features of ActuAtor should enable its application in studies of the form-function interplay in various intracellular contexts.
254.

Light-activated microtubule-based two-dimensional active nematic.

blue iLID in vitro Extracellular optogenetics
Soft Matter, 13 Sep 2023 DOI: 10.1039/d3sm00270e Link to full text
Abstract: We assess the ability of two light responsive kinesin motor clusters to drive dynamics of microtubule-based active nematics: opto-K401, a processive motor, and opto-K365, a non-processive motor. Measurements reveal an order of magnitude improvement in the contrast of nematic flow speeds between maximally- and minimally-illuminated states for opto-K365 motors when compared to opto-K401 construct. For opto-K365 nematics, we characterize both the steady-state flow and defect density as a function of applied light. We also examine the transient behavior as the system switches between steady-states upon changes in light intensities. Although nematic flows reach a steady state within tens of seconds, the defect density exhibits transient behavior for up to 10 minutes, showing a separation between small-scale active flows and system-scale structural states. Our work establishes an experimental platform that can exploit spatiotemporally-heterogeneous patterns of activity to generate targeted dynamical states.
255.

Photoactivatable base editors for spatiotemporally controlled genome editing in vivo.

blue AsLOV2 CRY2/CIB1 Magnets HEK293T mouse in vivo Transgene expression Nucleic acid editing
Biomaterials, 13 Sep 2023 DOI: 10.1016/j.biomaterials.2023.122328 Link to full text
Abstract: CRISPR-based base editors (BEs) are powerful tools for precise nucleotide substitution in a wide range of organisms, but spatiotemporal control of base editing remains a daunting challenge. Herein, we develop a photoactivatable base editor (Mag-ABE) for spatiotemporally controlled genome editing in vivo for the first time. The base editing activity of Mag-ABE can be activated by blue light for spatiotemporal regulation of both EGFP reporter gene and various endogenous genes editing. Meanwhile, the Mag-ABE prefers to edit A4 and A5 positions rather than to edit A6 position, showing the potential to decrease bystander editing of traditional adenine base editors. After integration with upconversion nanoparticles as a light transducer, the Mag-ABE is further applied for near-infrared (NIR) light-activated base editing of liver in transgenic reporter mice successfully. This study opens a promising way to improve the operability, safety, and precision of base editing.
256.

Diya – a universal light illumination platform for multiwell plate cultures.

blue green CcaS/CcaR CRY2/CIB1 EL222 Magnets VVD E. coli HEK293T HeLa S. cerevisiae Transgene expression
iScience, 9 Sep 2023 DOI: 10.1016/j.isci.2023.107862 Link to full text
Abstract: Recent progress in protein engineering has established optogenetics as one of the leading external non-invasive stimulation strategies, with many optogenetic tools being designed for in vivo operation. Characterization and optimization of these tools require a high-throughput and versatile light delivery system targeting micro-titer culture volumes. Here, we present a universal light illumination platform – Diya, compatible with a wide range of cell culture plates and dishes. Diya hosts specially-designed features ensuring active thermal management, homogeneous illumination, and minimal light bleedthrough. It offers light induction programming via a user-friendly custom-designed GUI. Through extensive characterization experiments with multiple optogenetic tools in diverse model organisms (bacteria, yeast and human cell lines), we show that Diya maintains viable conditions for cell cultures undergoing light induction. Finally, we demonstrate an optogenetic strategy for in vivo biomolecular controller operation. With a custom-designed antithetic integral feedback circuit, we exhibit robust perfect adaptation and light-controlled set-point variation using Diya.
257.

Control of cell retraction and protrusion with a single protein.

blue iLID hTERT RPE-1 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 8 Sep 2023 DOI: 10.1101/2023.09.07.556666 Link to full text
Abstract: The ability of a single protein to trigger different functions is an assumed key feature of cell signaling, yet there are very few examples demonstrating it. Here, using an optogenetic tool to control membrane localization of RhoA nucleotide exchange factors (GEFs), we present a case where the same protein can trigger both protrusion and retraction when recruited to the plasma membrane, polarizing the cell in two opposite directions. We show that the basal concentration of the GEF prior to activation predicts the resulting phenotype. A low concentration leads to retraction, whereas a high concentration triggers protrusion. This unexpected protruding behavior arises from the simultaneous activation of Cdc42 by the GEF and inhibition of RhoA by the PH domain of the GEF at high concentrations. We propose a minimal model that recapitulates the phenotypic switch, and we use its predictions to control the two phenotypes within selected cells by adjusting the frequency of light pulses. Our work exemplifies a unique case of control of antagonist phenotypes by a single protein that switches its function based on its concentration or dynamics of activity. It raises numerous open questions about the link between signaling protein and function, particularly in contexts where proteins are highly overexpressed, as often observed in cancer.
258.

Quantitative insights in tissue growth and morphogenesis with optogenetics.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Phys Biol, 7 Sep 2023 DOI: 10.1088/1478-3975/acf7a1 Link to full text
Abstract: Cells communicate with each other to jointly regulate cellular processes during cellular differentiation and tissue morphogenesis. This multiscale coordination arises through spatiotemporal activity of morphogens to pattern cell signaling and transcriptional factor activity. This coded information controls cell mechanics, proliferation, and differentiation to shape the growth and morphogenesis of organs. While many of the molecular components and physical interactions have been identified in key model developmental systems, there are still many unresolved questions related to the dynamics involved due to challenges in precisely perturbing and quantitatively measuring signaling dynamics. Recently, a broad range of synthetic optogenetic tools have been developed and employed to quantitatively define relationships between signal transduction and downstream cellular responses. These optogenetic tools can control intracellular activities at the single cell or whole tissue scale to direct subsequent biological processes. In this brief review, we highlight a selected set of studies that develop and implement optogenetic tools to unravel quantitative biophysical mechanisms for tissue growth and morphogenesis across a broad range of biological systems through the manipulation of morphogens, signal transduction cascades, and cell mechanics. More generally, we discuss how optogenetic tools have emerged as a powerful platform for probing and controlling multicellular development.
259.

Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy.

blue CRY2/CRY2 CRY2clust HEK293T J774A.1 mouse in vivo primary mouse BMDCs Signaling cascade control Endogenous gene expression
Nat Commun, 6 Sep 2023 DOI: 10.1038/s41467-023-41164-2 Link to full text
Abstract: The cGAS-STING signaling pathway has emerged as a promising target for immunotherapy development. Here, we introduce a light-sensitive optogenetic device for control of the cGAS/STING signaling to conditionally modulate innate immunity, called 'light-inducible SMOC-like repeats' (LiSmore). We demonstrate that photo-activated LiSmore boosts dendritic cell (DC) maturation and antigen presentation with high spatiotemporal precision. This non-invasive approach photo-sensitizes cytotoxic T lymphocytes to engage tumor antigens, leading to a sustained antitumor immune response. When combined with an immune checkpoint blocker (ICB), LiSmore improves antitumor efficacy in an immunosuppressive lung cancer model that is otherwise unresponsive to conventional ICB treatment. Additionally, LiSmore exhibits an abscopal effect by effectively suppressing tumor growth in a distal site in a bilateral mouse model of melanoma. Collectively, our findings establish the potential of targeted optogenetic activation of the STING signaling pathway for remote immunomodulation in mice.
260.

Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo.

blue iLID D. melanogaster in vivo Signaling cascade control Developmental processes
Development, 1 Sep 2023 DOI: 10.1242/dev.201818 Link to full text
Abstract: Positional information in development often manifests as stripes of gene expression, but how stripes form remains incompletely understood. Here, we use optogenetics and live-cell biosensors to investigate the posterior brachyenteron (byn) stripe in early Drosophila embryos. This stripe depends on interpretation of an upstream ERK activity gradient and the expression of two target genes, tailless (tll) and huckebein (hkb), that exert antagonistic control over byn. We find that high or low doses of ERK signaling produce transient or sustained byn expression, respectively. Although tll transcription is always rapidly induced, hkb converts graded ERK inputs into a variable time delay. Nuclei thus interpret ERK amplitude through the relative timing of tll and hkb transcription. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop, which is sufficient to explain byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that 'blurring' of an all-or-none stimulus through intracellular diffusion non-locally produces a byn stripe. Overall, we provide a blueprint for using optogenetics to dissect developmental signal interpretation in space and time.
261.

Opto4E-BP, an optogenetic tool for inducible, reversible, and cell type-specific inhibition of translation initiation.

blue cpLOV2 HEK293 mouse in vivo primary mouse cortical neurons Transgene expression
bioRxiv, 31 Aug 2023 DOI: 10.1101/2023.08.30.554643 Link to full text
Abstract: The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is one of the primary triggers for initiating cap-dependent translation. Amongst its functions, mTORC1 phosphorylates eIF4E-binding proteins (4E-BPs), which prevents them from binding to eIF4E and thereby enables translation initiation. mTORC1 signaling is required for multiple forms of protein synthesis- dependent synaptic plasticity and various forms of long-term memory (LTM), including associative threat memory. However, the approaches used thus far to target mTORC1 and its effectors, such as pharmacological inhibitors or genetic knockouts, lack fine spatial and temporal control. The development of a conditional and inducible eIF4E knockdown mouse line partially solved the issue of spatial control, but still lacked optimal temporal control to study memory consolidation. Here, we have designed a novel optogenetic tool (Opto4E-BP) for cell type-specific, light-dependent regulation of eIF4E in the brain. We show that light-activation of Opto4E-BP decreases protein synthesis in HEK cells and primary mouse neurons. In situ, light-activation of Opto4E-BP in excitatory neurons decreased protein synthesis in acute amygdala slices. Finally, light activation of Opto4E-BP in principal excitatory neurons in the lateral amygdala (LA) of mice after training blocked the consolidation of LTM. The development of this novel optogenetic tool to modulate eIF4E-dependent translation with spatiotemporal precision will permit future studies to unravel the complex relationship between protein synthesis and the consolidation of LTM.
262.

Cell Cycle Control by Optogenetically Regulated Cell Cycle Inhibitor Protein p21.

blue AsLOV2 CRY2/CIB1 CHO-K1 HEK293T Cell cycle control
Biology (Basel), 31 Aug 2023 DOI: 10.3390/biology12091194 Link to full text
Abstract: The progression through the cell cycle phases is driven by cyclin-dependent kinases and cyclins as their regulatory subunits. As nuclear protein, the cell cycle inhibitor p21/CDKN1A arrests the cell cycle at the growth phase G1 by inhibiting the activity of cyclin-dependent kinases. The G1 phase correlates with increased cell size and cellular productivity. Here, we applied an optogenetic approach to control the subcellular localization of p21 and its nuclear functions. To generate light-controllable p21, appropriate fusions with the blue light switch cryptochrome 2/CIBN and the AsLOV-based light-inducible nuclear localization signal, LINuS, were used. Both systems, p21-CRY2/CIB1 and p21-LINuS, increased the amounts of cells arrested in the G1 phase correlating with the increased cell-specific productivity of the reporter-protein-secreted alkaline phosphatase. Varying the intervals of blue LED light exposure and the light dose enable the fine-tuning of the systems. Light-controllable p21 implemented in producer cell lines could be applied to steer the uncoupling of cell proliferation and cell cycle arrest at the G1 phase optimizing the production of biotherapeutic proteins.
263.

Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases.

blue bPAC (BlaC) OaPAC zebrafish in vivo Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Elife, 17 Aug 2023 DOI: 10.7554/elife.83975 Link to full text
Abstract: Even though microbial photosensitive proteins have been used for optogenetics, their use should be optimized to precisely control cell and tissue functions in vivo. We exploited GtCCR4 and KnChR, cation channelrhodopsins from algae, BeGC1, a guanylyl cyclase rhodopsin from a fungus, and photoactivated adenylyl cyclases (PACs) from cyanobacteria (OaPAC) or bacteria (bPAC), to control cell functions in zebrafish. Optical activation of GtCCR4 and KnChR in the hindbrain reticulospinal V2a neurons, which are involved in locomotion, induced swimming behavior at relatively short latencies, whereas activation of BeGC1 or PACs achieved it at long latencies. Activation of GtCCR4 and KnChR in cardiomyocytes induced cardiac arrest, whereas activation of bPAC gradually induced bradycardia. KnChR activation led to an increase in intracellular Ca2+ in the heart, suggesting that depolarization caused cardiac arrest. These data suggest that these optogenetic tools can be used to reveal the function and regulation of zebrafish neurons and cardiomyocytes.
264.

Optogenetic cleavage of the Miro GTPase reveals the direct consequences of real-time loss of function in Drosophila.

blue LOVTRAP D. melanogaster in vivo Schneider 2 Organelle manipulation
PLoS Biol, 17 Aug 2023 DOI: 10.1371/journal.pbio.3002273 Link to full text
Abstract: Miro GTPases control mitochondrial morphology, calcium homeostasis, and regulate mitochondrial distribution by mediating their attachment to the kinesin and dynein motor complex. It is not clear, however, how Miro proteins spatially and temporally integrate their function as acute disruption of protein function has not been performed. To address this issue, we have developed an optogenetic loss of function "Split-Miro" allele for precise control of Miro-dependent mitochondrial functions in Drosophila. Rapid optogenetic cleavage of Split-Miro leads to a striking rearrangement of the mitochondrial network, which is mediated by mitochondrial interaction with the microtubules. Unexpectedly, this treatment did not impact the ability of mitochondria to buffer calcium or their association with the endoplasmic reticulum. While Split-Miro overexpression is sufficient to augment mitochondrial motility, sustained photocleavage shows that Split-Miro is surprisingly dispensable to maintain elevated mitochondrial processivity. In adult fly neurons in vivo, Split-Miro photocleavage affects both mitochondrial trafficking and neuronal activity. Furthermore, functional replacement of endogenous Miro with Split-Miro identifies its essential role in the regulation of locomotor activity in adult flies, demonstrating the feasibility of tuning animal behaviour by real-time loss of protein function.
265.

Selective induction of programmed cell death using synthetic biology tools.

blue green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Semin Cell Dev Biol, 17 Aug 2023 DOI: 10.1016/j.semcdb.2023.07.012 Link to full text
Abstract: Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
266.

C-terminal sequence stability profiling in Saccharomyces cerevisiae reveals protective protein quality control pathways.

blue iLID S. cerevisiae Transgene expression
J Biol Chem, 16 Aug 2023 DOI: 10.1016/j.jbc.2023.105166 Link to full text
Abstract: Protein quality control (PQC) mechanisms are essential for degradation of misfolded or dysfunctional proteins. An essential part of protein homeostasis is recognition of defective proteins by PQC components and their elimination by the ubiquitin-proteasome system, often concentrating on protein termini as indicators of protein integrity. Changes in amino acid composition of C-terminal ends arise through protein disintegration, alternative splicing or during the translation step of protein synthesis from premature termination or translational stop-codon read-through. We characterized reporter protein stability using light-controlled exposure of random C-terminal peptides (CtPC) in budding yeast revealing stabilizing and destabilizing features of amino acids at positions -5 to -1 of the C-terminus. The (de)stabilization properties of CtPC-degrons depend on amino acid identity, position as well as composition of the C-terminal sequence and are transferable. Evolutionary pressure towards stable proteins in yeast is evidenced by amino acid residues under-represented in cytosolic and nuclear proteins at corresponding C-terminal positions, but over-represented in unstable CtPC-degrons, and vice versa. Furthermore, analysis of translational stop-codon read-through peptides suggested that such extended proteins have destabilizing C-termini. PQC pathways targeting CtPC-degrons involved the ubiquitin-protein ligase Doa10 and the cullin-RING E3 ligase (CRL) SCFDas1. Overall, our data suggest a proteome protection mechanism that targets proteins with unnatural C-termini by recognizing a surprisingly large number of C-terminal sequence variants.
267.

A novel SATB1 protein isoform with different biophysical properties.

blue CRY2/CRY2 mouse T cells NIH/3T3 Organelle manipulation
Front Cell Dev Biol, 11 Aug 2023 DOI: 10.3389/fcell.2023.1242481 Link to full text
Abstract: Intra-thymic T cell development is coordinated by the regulatory actions of SATB1 genome organizer. In this report, we show that SATB1 is involved in the regulation of transcription and splicing, both of which displayed deregulation in Satb1 knockout murine thymocytes. More importantly, we characterized a novel SATB1 protein isoform and described its distinct biophysical behavior, implicating potential functional differences compared to the commonly studied isoform. SATB1 utilized its prion-like domains to transition through liquid-like states to aggregated structures. This behavior was dependent on protein concentration as well as phosphorylation and interaction with nuclear RNA. Notably, the long SATB1 isoform was more prone to aggregate following phase separation. Thus, the tight regulation of SATB1 isoforms expression levels alongside with protein post-translational modifications, are imperative for SATB1's mode of action in T cell development. Our data indicate that deregulation of these processes may also be linked to disorders such as cancer.
268.

Force propagation between epithelial cells depends on active coupling and mechano-structural polarization.

blue CRY2/CIB1 MDCK Control of cell-cell / cell-material interactions
Elife, 7 Aug 2023 DOI: 10.7554/elife.83588 Link to full text
Abstract: Cell-generated forces play a major role in coordinating the large-scale behavior of cell assemblies, in particular during development, wound healing, and cancer. Mechanical signals propagate faster than biochemical signals, but can have similar effects, especially in epithelial tissues with strong cell-cell adhesion. However, a quantitative description of the transmission chain from force generation in a sender cell, force propagation across cell-cell boundaries, and the concomitant response of receiver cells is missing. For a quantitative analysis of this important situation, here we propose a minimal model system of two epithelial cells on an H-pattern ('cell doublet'). After optogenetically activating RhoA, a major regulator of cell contractility, in the sender cell, we measure the mechanical response of the receiver cell by traction force and monolayer stress microscopies. In general, we find that the receiver cells show an active response so that the cell doublet forms a coherent unit. However, force propagation and response of the receiver cell also strongly depend on the mechano-structural polarization in the cell assembly, which is controlled by cell-matrix adhesion to the adhesive micropattern. We find that the response of the receiver cell is stronger when the mechano-structural polarization axis is oriented perpendicular to the direction of force propagation, reminiscent of the Poisson effect in passive materials. We finally show that the same effects are at work in small tissues. Our work demonstrates that cellular organization and active mechanical response of a tissue are key to maintain signal strength and lead to the emergence of elasticity, which means that signals are not dissipated like in a viscous system, but can propagate over large distances.
269.

High-Throughput Optogenetics Experiments in Yeast Using the Automated Platform Lustro.

blue CRY2/CIB1 Magnets S. cerevisiae
J Vis Exp, 4 Aug 2023 DOI: 10.3791/65686 Link to full text
Abstract: Optogenetics offers precise control over cellular behavior by utilizing genetically encoded light-sensitive proteins. However, optimizing these systems to achieve the desired functionality often requires multiple design-build-test cycles, which can be time-consuming and labor-intensive. To address this challenge, we have developed Lustro, a platform that combines light stimulation with laboratory automation, enabling efficient high-throughput screening and characterization of optogenetic systems. Lustro utilizes an automation workstation equipped with an illumination device, a shaking device, and a plate reader. By employing a robotic arm, Lustro automates the movement of a microwell plate between these devices, allowing for the stimulation of optogenetic strains and the measurement of their response. This protocol provides a step-by-step guide on using Lustro to characterize optogenetic systems for gene expression control in the budding yeast Saccharomyces cerevisiae. The protocol covers the setup of Lustro's components, including the integration of the illumination device with the automation workstation. It also provides detailed instructions for programming the illumination device, plate reader, and robot, ensuring smooth operation and data acquisition throughout the experimental process.
270.

Optogenetic strategies for optimizing the performance of biosensors of membrane phospholipids in live cells.

blue cpLOV2 CRY2/CIB1 CRY2/CRY2 LOVTRAP HEK293T HeLa Organelle manipulation
bioRxiv, 4 Aug 2023 DOI: 10.1101/2023.08.03.551799 Link to full text
Abstract: High-performance biosensors are crucial for elucidating the spatiotemporal regulatory roles and dynamics of membrane lipids, but there is a lack of improvement strategies for biosensors with low sensitivity and low-content substrates detection. Here we developed universal optogenetic strategies to improve a set of membrane biosensors by trapping them into specific region and further reducing the background signal, or by optically-controlled phase separation for membrane lipids detection and tracking. These improved biosensors were superior to typical tools and light simulation would enhance their detection performance and resolution, which might contribute to the design and optimization of other biosensors.
271.

Illuminating the inner workings of a natural protein switch: Blue-light sensing in LOV-activated diguanylate cyclases.

blue LOV domains Background
Sci Adv, 2 Aug 2023 DOI: 10.1126/sciadv.adh4721 Link to full text
Abstract: Regulatory proteins play a crucial role in adaptation to environmental cues. Especially for lifestyle transitions, such as cell proliferation or apoptosis, switch-like characteristics are desirable. While nature frequently uses regulatory circuits to amplify or dampen signals, stand-alone protein switches are interesting for applications like biosensors, diagnostic tools, or optogenetics. However, such stand-alone systems frequently feature limited dynamic and operational ranges and suffer from slow response times. Here, we characterize a LOV-activated diguanylate cyclase (LadC) that offers precise temporal and spatial control of enzymatic activity with an exceptionally high dynamic range over four orders of magnitude. To establish this pronounced activation, the enzyme exhibits a two-stage activation process in which its activity is inhibited in the dark by caging its effector domains and stimulated upon illumination by the formation of an extended coiled-coil. These switch-like characteristics of the LadC system can be used to develop new optogenetic tools with tight regulation.
272.

Optogenetic clustering and membrane translocation of the BcLOV4 photoreceptor.

blue BcLOV4 iLID HEK293T NIH/3T3 Signaling cascade control
Proc Natl Acad Sci U S A, 1 Aug 2023 DOI: 10.1073/pnas.2221615120 Link to full text
Abstract: Optogenetic tools respond to light through one of a small number of behaviors including allosteric changes, dimerization, clustering, or membrane translocation. Here, we describe a new class of optogenetic actuator that simultaneously clusters and translocates to the plasma membrane in response to blue light. We demonstrate that dual translocation and clustering of the BcLOV4 photoreceptor can be harnessed for novel single-component optogenetic tools, including for control of the entire family of epidermal growth factor receptor (ErbB1-4) tyrosine kinases. We further find that clustering and membrane translocation are mechanistically linked. Stronger clustering increased the magnitude of translocation and downstream signaling, increased sensitivity to light by ~threefold-to-fourfold, and decreased the expression levels needed for strong signal activation. Thus light-induced clustering of BcLOV4 provides a strategy to generate a new class of optogenetic tools and to enhance existing ones.
273.

Automatic detection of spatio-temporal signalling patterns in cell collectives.

blue CRY2/CIB1 MCF10A Signaling cascade control
J Cell Biol, 27 Jul 2023 DOI: 10.1083/jcb.202207048 Link to full text
Abstract: An increasing experimental evidence points to physiological importance of space-time correlations in signalling of cell collectives. From wound healing to epithelial homeostasis to morphogenesis, coordinated activation of bio-molecules between cells allows the collectives to perform more complex tasks and better tackle environmental challenges. To understand this information exchange and to advance new theories of emergent phenomena, we created ARCOS, a computational method to detect and quantify collective signalling. We demonstrate ARCOS on cell and organism collectives with space-time correlations on different scales in 2D and 3D. We make a new observation that oncogenic mutations in the MAPK/ERK and PIK3CA/Akt pathways of MCF10A epithelial cells induce ERK activity waves with different size, duration, and frequency. The open-source implementations of ARCOS are available as R and Python packages, and as a plugin for napari image viewer to interactively quantify collective phenomena without prior programming experience.
274.

Design principles for engineering light-controlled antibodies.

blue red Cryptochromes LOV domains Phytochromes Review
Trends Biotechnol, 26 Jul 2023 DOI: 10.1016/j.tibtech.2023.06.006 Link to full text
Abstract: Engineered antibodies are essential tools for research and advanced pharmacy. In the development of therapeutics, antibodies are excellent candidates as they offer both target recognition and modulation. Thanks to the latest advances in biotechnology, light-activated antibody fragments can be constructed to control spontaneous antigen interaction with high spatiotemporal precision. To implement conditional antigen binding, several optogenetic and optochemical engineering concepts have recently been developed. Here, we highlight the various strategies and discuss the features of opto-conditional antibodies. Each concept offers intrinsic advantages beneficial to different applications. In summary, the novel design approaches constitute a complementary toolset to promote current and upcoming antibody technologies with ultimate precision.
275.

Tissue Flows Are Tuned by Actomyosin-Dependent Mechanics in Developing Embryos.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
PRX Life, 25 Jul 2023 DOI: 10.1103/prxlife.1.013004 Link to full text
Abstract: Rapid epithelial tissue flows are essential to building and shaping developing embryos. However, the mechanical properties of embryonic epithelial tissues and the factors that control these properties are not well understood. Actomyosin generates contractile tensions and contributes to the mechanical properties of cells and cytoskeletal networks in vitro, but it remains unclear how the levels and patterns of actomyosin activity contribute to embryonic epithelial tissue mechanics in vivo. To dissect the roles of cell-generated tensions in the mechanics of flowing epithelial tissues, we use optogenetic tools to manipulate actomyosin contractility with spatiotemporal precision in the Drosophila germband epithelium, which rapidly flows during body axis elongation. We find that manipulating actomyosin-dependent tensions by either optogenetic activation or deactivation of actomyosin alters the solid-fluid mechanical properties of the germband epithelium, leading to changes in cell rearrangements and tissue-level flows. Optogenetically activating actomyosin leads to increases in the overall level but decreases in the anisotropy of tension in the tissue, whereas optogenetically deactivating actomyosin leads to decreases in both the level and anisotropy of tension compared to in wild-type embryos. We find that optogenetically activating actomyosin results in more solidlike (less fluidlike) tissue properties, which is associated with reduced cell rearrangements and tissue flow compared to in wild-type embryos. Optogenetically deactivating actomyosin also results in more solidlike properties than in wild-type embryos but less solidlike properties compared to optogenetically activating actomyosin. Together, these findings indicate that increasing the overall tension level is associated with more solidlike properties in tissues that are relatively isotropic, whereas high-tension anisotropy fluidizes the tissue. Our results reveal that epithelial tissue flows in developing embryos involve the coordinated actomyosin-dependent regulation of the mechanical properties of tissues and the tensions driving them to flow in order to achieve rapid tissue remodeling.
Submit a new publication to our database