Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 226 - 250 of 250 results
226.

Photoactivatable CRISPR-Cas9 for optogenetic genome editing.

blue CRY2/CIB1 Magnets HEK293T HeLa Nucleic acid editing
Nat Biotechnol, 15 Jun 2015 DOI: 10.1038/nbt.3245 Link to full text
Abstract: We describe an engineered photoactivatable Cas9 (paCas9) that enables optogenetic control of CRISPR-Cas9 genome editing in human cells. paCas9 consists of split Cas9 fragments and photoinducible dimerization domains named Magnets. In response to blue light irradiation, paCas9 expressed in human embryonic kidney 293T cells induces targeted genome sequence modifications through both nonhomologous end joining and homology-directed repair pathways. Genome editing activity can be switched off simply by extinguishing the light. We also demonstrate activation of paCas9 in spatial patterns determined by the sites of irradiation. Optogenetic control of targeted genome editing should facilitate improved understanding of complex gene networks and could prove useful in biomedical applications.
227.

The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells.

blue CRY2/CIB1 CRY2/CRY2 Cos-7 HEK293T NIH/3T3
ACS Synth Biol, 8 Jun 2015 DOI: 10.1021/acssynbio.5b00048 Link to full text
Abstract: The photoreceptor cryptochrome 2 (CRY2) has become a powerful optogenetic tool that allows light-inducible manipulation of various signaling pathways and cellular processes in mammalian cells with high spatiotemporal precision and ease of application. However, it has also been shown that the behavior of CRY2 under blue light is complex, as the photoexcited CRY2 can both undergo homo-oligomerization and heterodimerization by binding to its dimerization partner CIB1. To better understand the light-induced CRY2 activities in mammalian cells, this article systematically characterizes CRY2 homo-oligomerization in different cellular compartments, as well as how CRY2 homo-oligomerization and heterodimerization activities affect each other. Quantitative analysis reveals that membrane-bound CRY2 has drastically enhanced oligomerization activity compared to that of its cytoplasmic form. While CRY2 homo-oligomerization and CRY2-CIB1 heterodimerization could happen concomitantly, the presence of certain CIB1 fusion proteins can suppress CRY2 homo-oligomerization. However, the homo-oligomerization of cytoplasmic CRY2 can be significantly intensified by its recruitment to the membrane via interaction with the membrane-bound CIB1. These results contribute to the understanding of the light-inducible CRY2-CRY2 and CRY2-CIB1 interaction systems and can be used as a guide to establish new strategies utilizing the dual optogenetic characteristics of CRY2 to probe cellular processes.
228.

Optogenetics. Engineering of a light-gated potassium channel.

blue AsLOV2 HEK293T S. cerevisiae Xenopus oocytes zebrafish in vivo Neuronal activity control
Science, 7 May 2015 DOI: 10.1126/science.aaa2787 Link to full text
Abstract: The present palette of opsin-based optogenetic tools lacks a light-gated potassium (K(+)) channel desirable for silencing of excitable cells. Here, we describe the construction of a blue-light-induced K(+) channel 1 (BLINK1) engineered by fusing the plant LOV2-Jα photosensory module to the small viral K(+) channel Kcv. BLINK1 exhibits biophysical features of Kcv, including K(+) selectivity and high single-channel conductance but reversibly photoactivates in blue light. Opening of BLINK1 channels hyperpolarizes the cell to the K(+) equilibrium potential. Ectopic expression of BLINK1 reversibly inhibits the escape response in light-exposed zebrafish larvae. BLINK1 therefore provides a single-component optogenetic tool that can establish prolonged, physiological hyperpolarization of cells at low light intensities.
229.

Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering.

blue CRY2/CRY2 HEK293T NIH/3T3 rat hippocampal NSCs Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Nat Commun, 22 Apr 2015 DOI: 10.1038/ncomms7898 Link to full text
Abstract: Transmembrane receptors are the predominant conduit through which cells sense and transduce extracellular information into intracellular biochemical signals. Current methods to control and study receptor function, however, suffer from poor resolution in space and time and often employ receptor overexpression, which can introduce experimental artefacts. We report a genetically encoded approach, termed Clustering Indirectly using Cryptochrome 2 (CLICR), for spatiotemporal control over endogenous transmembrane receptor activation, enabled through the optical regulation of target receptor clustering and downstream signalling using noncovalent interactions with engineered Arabidopsis Cryptochrome 2 (Cry2). CLICR offers a modular platform to enable photocontrol of the clustering of diverse transmembrane receptors including fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR) and integrins in multiple cell types including neural stem cells. Furthermore, light-inducible manipulation of endogenous receptor tyrosine kinase (RTK) activity can modulate cell polarity and establish phototaxis in fibroblasts. The resulting spatiotemporal control over cellular signalling represents a powerful new optogenetic framework for investigating and controlling cell function and fate.
230.

Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish.

red PhyB/PIF3 CHO-K1 Cos-7 HEK293T HeLa NIH/3T3 zebrafish in vivo
ACS Synth Biol, 30 Mar 2015 DOI: 10.1021/acssynbio.5b00004 Link to full text
Abstract: Protein trafficking in and out of the nucleus represents a key step in controlling cell fate and function. Here we report the development of a red light-inducible and far-red light-reversible synthetic system for controlling nuclear localization of proteins in mammalian cells and zebrafish. First, we synthetically reconstructed and validated the red light-dependent Arabidopsis phytochrome B nuclear import mediated by phytochrome-interacting factor 3 in a nonplant environment and support current hypotheses on the import mechanism in planta. On the basis of this principle we next regulated nuclear import and activity of target proteins by the spatiotemporal projection of light patterns. A synthetic transcription factor was translocated into the nucleus of mammalian cells and zebrafish to drive transgene expression. These data demonstrate the first in vivo application of a plant phytochrome-based optogenetic tool in vertebrates and expand the repertoire of available light-regulated molecular devices.
231.

A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection.

blue BlgC HEK293T rat in vivo Immediate control of second messengers
Angew Chem Int Ed Engl, 18 Mar 2015 DOI: 10.1002/anie.201412204 Link to full text
Abstract: Precise spatiotemporal control of physiological processes by optogenetic devices inspired by synthetic biology may provide novel treatment opportunities for gene- and cell-based therapies. An erectile optogenetic stimulator (EROS), a synthetic designer guanylate cyclase producing a blue-light-inducible surge of the second messenger cyclic guanosine monophosphate (cGMP) in mammalian cells, enabled blue-light-dependent penile erection associated with occasional ejaculation after illumination of EROS-transfected corpus cavernosum in male rats. Photostimulated short-circuiting of complex psychological, neural, vascular, and endocrine factors to stimulate penile erection in the absence of sexual arousal may foster novel advances in the treatment of erectile dysfunction.
232.

An optogenetic upgrade for the Tet-OFF system.

blue AsLOV2 HEK293T
Biotechnol Bioeng, 13 Mar 2015 DOI: 10.1002/bit.25562 Link to full text
Abstract: The rapid development of mammalian optogenetics has produced an expanding number of gene switches that can be controlled with the unprecedented spatiotemporal resolution of light. However, in the "pre-optogenetic" era many networks, cell lines and transgenic organisms have been engineered that rely on chemically-inducible transgene expression systems but would benefit from the advantages of the traceless inducer light. To open the possibility for the effortless upgrade of such systems from chemical inducers to light, we capitalized on the specific Med25VBD inhibitor of the VP16/VP64 transactivation domain. In a first step, we demonstrated the efficiency and selectivity of Med25VBD in the inhibition of VP16/VP64-based transgene expression systems. Then, we fused the inhibitor to the blue light-responsive B-LID degron and optimized the performance of this construct with regard to the number of Med25VBD repeats. This approach resulted in an optogenetic upgrade of the popular Tet-OFF (TetR-VP64, tetO7 -PhCMVmin ) system that allows tunable, blue light-inducible transgene expression in HEK-293T cells.
233.

A light-inducible CRISPR-Cas9 system for control of endogenous gene activation.

blue CRY2/CIB1 HEK293T Endogenous gene expression
Nat Chem Biol, 9 Feb 2015 DOI: 10.1038/nchembio.1753 Link to full text
Abstract: Optogenetic systems enable precise spatial and temporal control of cell behavior. We engineered a light-activated CRISPR-Cas9 effector (LACE) system that induces transcription of endogenous genes in the presence of blue light. This was accomplished by fusing the light-inducible heterodimerizing proteins CRY2 and CIB1 to a transactivation domain and the catalytically inactive dCas9, respectively. The versatile LACE system can be easily directed to new DNA sequences for the dynamic regulation of endogenous genes.
234.

CRISPR-Cas9-based photoactivatable transcription system.

blue CRY2/CIB1 Cos-7 HEK293 HEK293T HeLa Endogenous gene expression
Chem Biol, 22 Jan 2015 DOI: 10.1016/j.chembiol.2014.12.011 Link to full text
Abstract: Targeted endogenous gene activation is necessary for understanding complex gene networks and has great potential in medical and industrial applications. The CRISPR-Cas system offers simple and powerful tools for this purpose. However, these CRISPR-Cas-based tools for activating user-defined genes are unable to offer precise temporal control of gene expression, despite the fact that many biological phenomena are regulated by highly dynamic patterns of gene expression. Here we created a light-inducible, user-defined, endogenous gene activation system based on CRISPR-Cas9. We demonstrated that this CRISPR-Cas9-based transcription system can allow rapid and reversible targeted gene activation by light. In addition, using this system, we have exemplified photoactivation of multiple user-defined endogenous genes in mammalian cells. The present CRISPR-Cas9-based transcription system offers simple and versatile approaches for precise endogenous gene activation in basic biological research and biotechnology applications.
235.

Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant.

red BphG HEK293F HEK293T hMSCs mouse in vivo Immediate control of second messengers
Nat Commun, 11 Nov 2014 DOI: 10.1038/ncomms6392 Link to full text
Abstract: Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain-computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered optogenetic implant containing designer cells engineered for near-infrared (NIR) light-adjustable expression of the human glycoprotein SEAP (secreted alkaline phosphatase). The synthetic optogenetic signalling pathway interfacing the BCI with target gene expression consists of an engineered NIR light-activated bacterial diguanylate cyclase (DGCL) producing the orthogonal second messenger cyclic diguanosine monophosphate (c-di-GMP), which triggers the stimulator of interferon genes (STING)-dependent induction of synthetic interferon-β promoters. Humans generating different mental states (biofeedback control, concentration, meditation) can differentially control SEAP production of the designer cells in culture and of subcutaneous wireless-powered optogenetic implants in mice.
236.

Engineered UV-A light-responsive gene expression system for measuring sun cream efficacy in mammalian cell culture.

blue CRY2/CIB1 HEK293T
J Biotechnol, 16 Sep 2014 DOI: 10.1016/j.jbiotec.2014.09.008 Link to full text
Abstract: Light-dependent gene regulation systems are advantageous as they allow for precise spatio-temporal control of target gene expression. In this paper, we present a novel UV-A and blue-light-inducible gene control system that is based on the light-dependent heterodimerization of the CRY2 and C1BN domains. Upon their interaction, a transcription factor is released from the cell membrane and initiates target gene expression. Capitalizing on that, sun cream UV-A protection properties were measured intracellularly.
237.

Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells.

blue AsLOV2 HEK293T HeLa Hep G2 S. cerevisiae Cell cycle control
Nat Commun, 14 Jul 2014 DOI: 10.1038/ncomms5404 Link to full text
Abstract: The function of many eukaryotic proteins is regulated by highly dynamic changes in their nucleocytoplasmic distribution. The ability to precisely and reversibly control nuclear translocation would, therefore, allow dissecting and engineering cellular networks. Here we develop a genetically encoded, light-inducible nuclear localization signal (LINuS) based on the LOV2 domain of Avena sativa phototropin 1. LINuS is a small, versatile tag, customizable for different proteins and cell types. LINuS-mediated nuclear import is fast and reversible, and can be tuned at different levels, for instance, by introducing mutations that alter AsLOV2 domain photo-caging properties or by selecting nuclear localization signals (NLSs) of various strengths. We demonstrate the utility of LINuS in mammalian cells by controlling gene expression and entry into mitosis with blue light.
238.

Bidirectional regulation of mRNA translation in mammalian cells by using PUF domains.

blue CRY2/CIB1 HEK293T
Angew Chem Int Ed Engl, 26 Mar 2014 DOI: 10.1002/anie.201402095 Link to full text
Abstract: The regulation of gene expression is crucial in diverse areas of biological science, engineering, and medicine. A genetically encoded system based on the RNA binding domain of the Pumilio and FBF (PUF) proteins was developed for the bidirectional regulation (i.e., either upregulation or downregulation) of the translation of a target mRNA. PUF domains serve as designable scaffolds for the recognition of specific RNA elements and the specificity can be easily altered to target any 8-nucleotide RNA sequence. The expression of a reporter could be varied by over 17-fold when using PUF-based activators and repressors. The specificity of the method was established by using wild-type and mutant PUF domains. Furthermore, this method could be used to activate the translation of target mRNA downstream of PUF binding sites in a light-dependent manner. Such specific bidirectional control of mRNA translation could be particularly useful in the fields of synthetic biology, developmental biology, and metabolic engineering.
239.

Light-inducible gene regulation with engineered zinc finger proteins.

blue FKF1/GI HEK293T HeLa
Methods Mol Biol, 21 Mar 2014 DOI: 10.1007/978-1-4939-0470-9_7 Link to full text
Abstract: The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells.
240.

An optogenetic gene expression system with rapid activation and deactivation kinetics.

blue EL222 HEK293T Jurkat zebrafish in vivo Transgene expression
Nat Chem Biol, 12 Jan 2014 DOI: 10.1038/nchembio.1430 Link to full text
Abstract: Optogenetic gene expression systems can control transcription with spatial and temporal detail unequaled with traditional inducible promoter systems. However, current eukaryotic light-gated transcription systems are limited by toxicity, dynamic range or slow activation and deactivation. Here we present an optogenetic gene expression system that addresses these shortcomings and demonstrate its broad utility. Our approach uses an engineered version of EL222, a bacterial light-oxygen-voltage protein that binds DNA when illuminated with blue light. The system has a large (>100-fold) dynamic range of protein expression, rapid activation (<10 s) and deactivation kinetics (<50 s) and a highly linear response to light. With this system, we achieve light-gated transcription in several mammalian cell lines and intact zebrafish embryos with minimal basal gene activation and toxicity. Our approach provides a powerful new tool for optogenetic control of gene expression in space and time.
241.

Optogenetic control of protein kinase activity in mammalian cells.

blue CRY2/CRY2 HEK293T Signaling cascade control
ACS Synth Biol, 4 Oct 2013 DOI: 10.1021/sb400090s Link to full text
Abstract: Light-dependent dimerization is the basis for recently developed noninvasive optogenetic tools. Here we present a novel tool combining optogenetics with the control of protein kinase activity to investigate signal transduction pathways. Mediated by Arabidopsis thaliana photoreceptor cryptochrome 2, we activated the protein kinase C-RAF by blue light-dependent dimerization, allowing for decoupling from upstream signaling events induced by surface receptors. The activation by light is fast, reversible, and not only time but also dose dependent as monitored by phosphorylation of ERK1/2. Additionally, light-activated C-RAF controls serum response factor-mediated gene expression. Light-induced heterodimerization of C-RAF with a kinase-dead mutant of B-RAF demonstrates the enhancing role of B-RAF as a scaffold for C-RAF activity, which leads to the paradoxical activation of C-RAF found in human cancers. This optogenetic tool enables reversible control of protein kinase activity in signal duration and strength. These properties can help to shed light onto downstream signaling processes of protein kinases in living cells.
242.

Light-inducible activation of target mRNA translation in mammalian cells.

blue CRY2/CIB1 HEK293T
Chem Commun (Camb), 28 Sep 2013 DOI: 10.1039/c3cc44866e Link to full text
Abstract: A genetically encoded optogenetic system was constructed that activates mRNA translation in mammalian cells in response to light. Blue light induces the reconstitution of an RNA binding domain and a translation initiation domain, thereby activating target mRNA translation downstream of the binding sites.
243.

Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch.

blue CRY2/CRY2 Flp-In-T-REx293 HEK293T Signaling cascade control
J Biol Chem, 5 Jul 2013 DOI: 10.1074/jbc.m113.493361 Link to full text
Abstract: Nuclear bodies are discrete suborganelle structures that perform specialized functions in eukaryotic cells. In plant cells, light can induce de novo formation of nuclear bodies called photobodies (PBs) composed of the photosensory pigments, phytochrome (PHY) or cryptochrome (CRY). The mechanisms of formation, the exact compositions, and the functions of plant PBs are not known. Here, we have expressed Arabidopsis CRY2 (AtCRY2) in mammalian cells and analyzed its fate after blue light exposure to understand the requirements for PB formation, the functions of PBs, and their potential use in cell biology. We found that light efficiently induces AtCRY2-PB formation in mammalian cells, indicating that, other than AtCRY2, no plant-specific proteins or nucleic acids are required for AtCRY2-PB formation. Irradiation of AtCRY2 led to its degradation; however, degradation was not dependent upon photobody formation. Furthermore, we found that AtCRY2 photobody formation is associated with light-stimulated interaction with mammalian COP1 E3 ligase. Finally, we demonstrate that by fusing AtCRY2 to the TopBP1 DNA damage checkpoint protein, light-induced AtCRY2 PBs can be used to activate DNA damage signaling pathway in the absence of DNA damage.
244.

A light-triggered protein secretion system.

UV UVR8/UVR8 Cos-7 HEK293T rat hippocampal neurons Control of vesicular transport
J Cell Biol, 13 May 2013 DOI: 10.1083/jcb.201210119 Link to full text
Abstract: Optical control of protein interactions has emerged as a powerful experimental paradigm for manipulating and studying various cellular processes. Tools are now available for controlling a number of cellular functions, but some fundamental processes, such as protein secretion, have been difficult to engineer using current optical tools. Here we use UVR8, a plant photoreceptor protein that forms photolabile homodimers, to engineer the first light-triggered protein secretion system. UVR8 fusion proteins were conditionally sequestered in the endoplasmic reticulum, and a brief pulse of light triggered robust forward trafficking through the secretory pathway to the plasma membrane. UVR8 was not responsive to excitation light used to image cyan, green, or red fluorescent protein variants, allowing multicolor visualization of cellular markers and secreted protein cargo as it traverses the cellular secretory pathway. We implemented this novel tool in neurons to demonstrate restricted, local trafficking of secretory cargo near dendritic branch points.
245.

Multi-chromatic control of mammalian gene expression and signaling.

blue red UV PhyB/PIF6 UVR8/COP1 VVD CHO-K1 Cos-7 HEK293T MEF-1 NIH/3T3 SNB-19 Transgene expression Control of cell-cell / cell-material interactions Multichromatic
Nucleic Acids Res, 26 Apr 2013 DOI: 10.1093/nar/gkt340 Link to full text
Abstract: The emergence and future of mammalian synthetic biology depends on technologies for orchestrating and custom tailoring complementary gene expression and signaling processes in a predictable manner. Here, we demonstrate for the first time multi-chromatic expression control in mammalian cells by differentially inducing up to three genes in a single cell culture in response to light of different wavelengths. To this end, we developed an ultraviolet B (UVB)-inducible expression system by designing a UVB-responsive split transcription factor based on the Arabidopsis thaliana UVB receptor UVR8 and the WD40 domain of COP1. The system allowed high (up to 800-fold) UVB-induced gene expression in human, monkey, hamster and mouse cells. Based on a quantitative model, we determined critical system parameters. By combining this UVB-responsive system with blue and red light-inducible gene control technology, we demonstrate multi-chromatic multi-gene control by differentially expressing three genes in a single cell culture in mammalian cells, and we apply this system for the multi-chromatic control of angiogenic signaling processes. This portfolio of optogenetic tools enables the design and implementation of synthetic biological networks showing unmatched spatiotemporal precision for future research and biomedical applications.
246.

Optogenetic protein clustering and signaling activation in mammalian cells.

blue CRY2/CRY2 HEK293T NIH/3T3 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Nat Methods, 3 Feb 2013 DOI: 10.1038/nmeth.2360 Link to full text
Abstract: We report an optogenetic method based on Arabidopsis thaliana cryptochrome 2 for rapid and reversible protein oligomerization in response to blue light. We demonstrated its utility by photoactivating the β-catenin pathway, achieving a transcriptional response higher than that obtained with the natural ligand Wnt3a. We also demonstrated the modularity of this approach by photoactivating RhoA with high spatiotemporal resolution, thereby suggesting a previously unknown mode of activation for this Rho GTPase.
247.

Optical control of protein activity by fluorescent protein domains.

cyan Dronpa145K/N Dronpa145N HEK293T HeLa in vitro NIH/3T3 Control of cytoskeleton / cell motility / cell shape
Science, 9 Nov 2012 DOI: 10.1126/science.1226854 Link to full text
Abstract: Fluorescent proteins (FPs) are widely used as optical sensors, whereas other light-absorbing domains have been used for optical control of protein localization or activity. Here, we describe light-dependent dissociation and association in a mutant of the photochromic FP Dronpa, and we used it to control protein activities with light. We created a fluorescent light-inducible protein design in which Dronpa domains are fused to both termini of an enzyme domain. In the dark, the Dronpa domains associate and cage the protein, but light induces Dronpa dissociation and activates the protein. This method enabled optical control over guanine nucleotide exchange factor and protease domains without extensive screening. Our findings extend the applications of FPs from exclusively sensing functions to also encompass optogenetic control.
248.

Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors.

blue FKF1/GI HEK293T HeLa MCF7 Transgene expression
J Am Chem Soc, 27 Sep 2012 DOI: 10.1021/ja3065667 Link to full text
Abstract: Advanced gene regulatory systems are necessary for scientific research, synthetic biology, and gene-based medicine. An ideal system would allow facile spatiotemporal manipulation of gene expression within a cell population that is tunable, reversible, repeatable, and can be targeted to diverse DNA sequences. To meet these criteria, a gene regulation system was engineered that combines light-sensitive proteins and programmable zinc finger transcription factors. This system, light-inducible transcription using engineered zinc finger proteins (LITEZ), uses two light-inducible dimerizing proteins from Arabidopsis thaliana, GIGANTEA and the LOV domain of FKF1, to control synthetic zinc finger transcription factor activity in human cells. Activation of gene expression in human cells engineered with LITEZ was reversible and repeatable by modulating the duration of illumination. The level of gene expression could also be controlled by modulating light intensity. Finally, gene expression could be activated in a spatially defined pattern by illuminating the human cell culture through a photomask of arbitrary geometry. LITEZ enables new approaches for precisely regulating gene expression in biotechnology and medicine, as well as studying gene function, cell-cell interactions, and tissue morphogenesis.
249.

Rapid blue-light-mediated induction of protein interactions in living cells.

blue CRY2/CIB1 HEK293T S. cerevisiae
Nat Methods, 31 Oct 2010 DOI: 10.1038/nmeth.1524 Link to full text
Abstract: Dimerizers allowing inducible control of protein-protein interactions are powerful tools for manipulating biological processes. Here we describe genetically encoded light-inducible protein-interaction modules based on Arabidopsis thaliana cryptochrome 2 and CIB1 that require no exogenous ligands and dimerize on blue-light exposure with subsecond time resolution and subcellular spatial resolution. We demonstrate the utility of this system by inducing protein translocation, transcription and Cre recombinase-mediated DNA recombination using light.
250.

Induction of protein-protein interactions in live cells using light.

blue FKF1/GI HEK293T NIH/3T3 Control of cytoskeleton / cell motility / cell shape
Nat Biotechnol, 4 Oct 2009 DOI: 10.1038/nbt.1569 Link to full text
Abstract: Protein-protein interactions are essential for many cellular processes. We have developed a technology called light-activated dimerization (LAD) to artificially induce protein hetero- and homodimerization in live cells using light. Using the FKF1 and GIGANTEA (GI) proteins of Arabidopsis thaliana, we have generated protein tags whose interaction is controlled by blue light. We demonstrated the utility of this system with LAD constructs that can recruit the small G-protein Rac1 to the plasma membrane and induce the local formation of lamellipodia in response to focal illumination. We also generated a light-activated transcription factor by fusing domains of GI and FKF1 to the DNA binding domain of Gal4 and the transactivation domain of VP16, respectively, showing that this technology is easily adapted to other systems. These studies set the stage for the development of light-regulated signaling molecules for controlling receptor activation, synapse formation and other signaling events in organisms.
Submit a new publication to our database