Showing 226 - 250 of 354 results
226.
Luciferase-LOV BRET enables versatile and specific transcriptional readout of cellular protein-protein interactions.
Abstract:
Technologies that convert transient protein-protein interactions (PPIs) into stable expression of a reporter gene are useful for genetic selections, high-throughput screening, and multiplexing with omics technologies. We previously reported SPARK (Kim et al., 2017), a transcription factor that is activated by the coincidence of blue light and a PPI. Here, we report an improved, second-generation SPARK2 that incorporates a luciferase moiety to control the light-sensitive LOV domain. SPARK2 can be temporally gated by either external light or addition of a small-molecule luciferin, which causes luciferase to open LOV via proximity-dependent BRET. Furthermore, the nested 'AND' gate design of SPARK2-in which both protease recruitment to the membrane-anchored transcription factor and LOV domain opening are regulated by the PPI of interest-yields a lower-background system and improved PPI specificity. We apply SPARK2 to high-throughput screening for GPCR agonists and for the detection of trans-cellular contacts, all with versatile transcriptional readout.
227.
Advances in optogenetic regulation of gene expression in mammalian cells using cryptochrome 2 (CRY2).
Abstract:
Synthetic regulation of gene expression provides a powerful approach to reprogram molecular and cellular processes and test the function of specific genes and gene products. In the last decade, optogenetic systems that allow light-dependent gene regulation have become valuable tools, providing tight spatiotemporal control of protein levels. Here we discuss and build on recent optogenetic approaches for regulating gene expression in mammalian cells using cryptochrome 2 (CRY2), a photoreceptor protein from Arabidopsis. We provide detailed protocols for using light to manipulate activity of a CRY2-based engineered photoactivatable Cre DNA recombinase, and to induce or disrupt transcription factor function. In addition, we provide instructions and software for building an inexpensive Rasberry-Pi-based programable LED device for optogenetic experiments, delivering pulsed light with customized control of illumination duration, frequency, and intensity.
228.
Membrane-Associated, Not Cytoplasmic or Nuclear, FGFR1 Induces Neuronal Differentiation.
Abstract:
The intracellular transport of receptor tyrosine kinases results in the differential activation of various signaling pathways. In this study, optogenetic stimulation of fibroblast growth factor receptor type 1 (FGFR1) was performed to study the effects of subcellular targeting of receptor kinases on signaling and neurite outgrowth. The catalytic domain of FGFR1 fused to the algal light-oxygen-voltage-sensing (LOV) domain was directed to different cellular compartments (plasma membrane, cytoplasm and nucleus) in human embryonic kidney (HEK293) and pheochromocytoma (PC12) cells. Blue light stimulation elevated the pERK and pPLCγ1 levels in membrane-opto-FGFR1-transfected cells similarly to ligand-induced receptor activation; however, no changes in pAKT levels were observed. PC12 cells transfected with membrane-opto-FGFR1 exhibited significantly longer neurites after light stimulation than after growth factor treatment, and significantly more neurites extended from their cell bodies. The activation of cytoplasmic FGFR1 kinase enhanced ERK signaling in HEK293 cells but not in PC12 cells and did not induce neuronal differentiation. The stimulation of FGFR1 kinase in the nucleus also did not result in signaling changes or neurite outgrowth. We conclude that FGFR1 kinase needs to be associated with membranes to induce the differentiation of PC12 cells mainly via ERK activation.
229.
Optogenetic perturbation of the biochemical pathways that control cell behavior.
Abstract:
Optogenetic tools provide a level of spatial and temporal resolution needed to shed new light on dynamic intercellular processes. In this chapter we outline specific protocols for applying these tools to cell motility (optogenetic cofilin), apoptosis [optogenetic Bcl-like protein 4 (Bax)], and protein kinase-mediated signaling pathways [optogenetic cAMP-dependent protein kinase (PKA)]. The activity of these optogenetic species is regulated by the light-mediated dimerization of a cryptochrome/Cib protein pair, which controls the intracellular positioning of the protein of interest. The light induced recruitment of cofilin to the cytoskeleton is utilized for directed migration studies and filopodial dynamics. Light-triggered migration of Bax to the outer mitochondrial membrane induces cellular collapse and eventual apoptosis. Finally, the light-mediated movement of PKA to specific intracellular compartments offers the means to assess the consequences of PKA activity in a site-specific fashion via phosphoproteomic analysis.
230.
RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43.
-
Mann, JR
-
Gleixner, AM
-
Mauna, JC
-
Gomes, E
-
DeChellis-Marks, MR
-
Needham, PG
-
Copley, KE
-
Hurtle, B
-
Portz, B
-
Pyles, NJ
-
Guo, L
-
Calder, CB
-
Wills, ZP
-
Pandey, UB
-
Kofler, JK
-
Brodsky, JL
-
Thathiah, A
-
Shorter, J
-
Donnelly, CJ
Abstract:
TDP-43 proteinopathy is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia where cytoplasmic TDP-43 inclusions are observed within degenerating regions of patient postmortem tissue. The mechanism by which TDP-43 aggregates has remained elusive due to technological limitations, which prevent the analysis of specific TDP-43 interactions in live cells. We present an optogenetic approach to reliably induce TDP-43 proteinopathy under spatiotemporal control. We show that the formation of pathologically relevant inclusions is driven by aberrant interactions between low-complexity domains of TDP-43 that are antagonized by RNA binding. Although stress granules are hypothesized to be a conduit for seeding TDP-43 proteinopathy, we demonstrate pathological inclusions outside these RNA-rich structures. Furthermore, we show that aberrant phase transitions of cytoplasmic TDP-43 are neurotoxic and that treatment with oligonucleotides composed of TDP-43 target sequences prevent inclusions and rescue neurotoxicity. Collectively, these studies provide insight into the mechanisms that underlie TDP-43 proteinopathy and present a potential avenue for therapeutic intervention.
231.
Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem.
-
Pan, H
-
Wang, H
-
Yu, J
-
Huang, X
-
Hao, Y
-
Zhang, C
-
Ji, W
-
Yang, M
-
Gong, X
-
Wu, X
-
Chang, J
Abstract:
In vivo noninvasively manipulating biological functions by the mediation of biosafe near infrared (NIR) light is becoming increasingly popular. For these applications, upconversion rare-earth nanomaterial holds great promise as a novel photonic element, and has been widely adopted in optogenetics. In this article, an upconversion optogenetic nanosystem that was promised to achieve autophagy up-regulation with spatiotemporal precision was designed. The implantable, wireless, recyclable, less-invasive and biocompatible system worked via two separated parts: blue light-receptor optogenetics-autophagy upregulation plasmids, for protein import; upconversion rods-encapsulated flexible capsule (UCRs-capsule), for converting tissue-penetrative NIR light into local visible blue light. Results validated that this system could achieve up-regulation of autophagy in vitro (in both HeLa and 293T cell lines) and remotely penetrate tissue (∼3.5 mm) in vivo. Since autophagy serves at a central position in intracellular signalling pathways, which is correlative with diverse pathologies, we expect that this method could establish an upconversion material-based autophagy up-regulation strategy for fundamental and clinical applications.
232.
A Photoactivatable Botulinum Neurotoxin for Inducible Control of Neurotransmission.
-
Liu, Q
-
Sinnen, BL
-
Boxer, EE
-
Schneider, MW
-
Grybko, MJ
-
Buchta, WC
-
Gibson, ES
-
Wysoczynski, CL
-
Ford, CP
-
Gottschalk, A
-
Aoto, J
-
Tucker, CL
-
Kennedy, MJ
Abstract:
Regulated secretion is critical for diverse biological processes ranging from immune and endocrine signaling to synaptic transmission. Botulinum and tetanus neurotoxins, which specifically proteolyze vesicle fusion proteins involved in regulated secretion, have been widely used as experimental tools to block these processes. Genetic expression of these toxins in the nervous system has been a powerful approach for disrupting neurotransmitter release within defined circuitry, but their current utility in the brain and elsewhere remains limited by lack of spatial and temporal control. Here we engineered botulinum neurotoxin B so that it can be activated with blue light. We demonstrate the utility of this approach for inducibly disrupting excitatory neurotransmission, providing a first-in-class optogenetic tool for persistent, light-triggered synaptic inhibition. In addition to blocking neurotransmitter release, this approach will have broad utility for conditionally disrupting regulated secretion of diverse bioactive molecules, including neuropeptides, neuromodulators, hormones, and immune molecules. VIDEO ABSTRACT.
233.
Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions.
-
Jung, H
-
Kim, SW
-
Kim, M
-
Hong, J
-
Yu, D
-
Kim, JH
-
Lee, Y
-
Kim, S
-
Woo, D
-
Shin, HS
-
Park, BO
-
Do Heo, W
Abstract:
Spatiotemporal control of gene expression or labeling is a valuable strategy for identifying functions of genes within complex neural circuits. Here, we develop a highly light-sensitive and efficient photoactivatable Flp recombinase (PA-Flp) that is suitable for genetic manipulation in vivo. The highly light-sensitive property of PA-Flp is ideal for activation in deep mouse brain regions by illumination with a noninvasive light-emitting diode. In addition, PA-Flp can be extended to the Cre-lox system through a viral vector as Flp-dependent Cre expression platform, thereby activating both Flp and Cre. Finally, we demonstrate that PA-Flp-dependent, Cre-mediated Cav3.1 silencing in the medial septum increases object-exploration behavior in mice. Thus, PA-Flp is a noninvasive, highly efficient, and easy-to-use optogenetic module that offers a side-effect-free and expandable genetic manipulation tool for neuroscience research.
234.
Optogenetic control of integrin-matrix interaction.
Abstract:
Optogenetic approaches have gathered momentum in precisely modulating and interrogating cellular signalling and gene expression. The use of optogenetics on the outer cell surface to interrogate how cells receive stimuli from their environment, however, has so far not reached its full potential. Here we demonstrate the development of an optogenetically regulated membrane receptor-ligand pair exemplified by the optically responsive interaction of an integrin receptor with the extracellular matrix. The system is based on an integrin engineered with a phytochrome-interacting factor domain (OptoIntegrin) and a red light-switchable phytochrome B-functionalized matrix (OptoMatrix). This optogenetic receptor-ligand pair enables light-inducible and -reversible cell-matrix interaction, as well as the controlled activation of downstream mechanosensory signalling pathways. Pioneering the application of optogenetic switches in the extracellular environment of cells, this OptoMatrix–OptoIntegrin system may serve as a blueprint for rendering matrix–receptor interactions amendable to precise control with light.
235.
Luminescence-activated nucleotide cyclase regulates spatial and temporal cAMP synthesis.
Abstract:
cAMP is a ubiquitous second messenger that regulates cellular proliferation, differentiation, attachment, migration, and several other processes. It has become increasingly evident that tight regulation of cAMP accumulation and localization confers divergent yet specific signaling to downstream pathways. Currently, few tools are available that have sufficient spatial and temporal resolution to study location-biased cAMP signaling. Here, we introduce a new fusion protein consisting of a light-activated adenylyl cyclase (bPAC) and luciferase (nLuc). This construct allows dual activation of cAMP production through temporally precise photostimulation or chronic chemical stimulation that can be fined-tuned to mimic physiological levels and duration of cAMP synthesis to trigger downstream events. By targeting this construct to different compartments, we show that cAMP produced in the cytosol and nucleus stimulates proliferation in thyroid cells. The bPAC-nLuc fusion construct adds a new reagent to the available toolkit to study cAMP-regulated processes in living cells.
236.
Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome.
Abstract:
Phase transitions involving biomolecular liquids are a
fundamental mechanism underlying intracellular organization.
In the cell nucleus, liquid-liquid phase
separation of intrinsically disordered proteins (IDPs)
is implicated in assembly of the nucleolus, as well
as transcriptional clusters, and other nuclear bodies.
However, it remains unclear whether and how physical
forces associated with nucleation, growth, and
wetting of liquid condensates can directly restructure
chromatin. Here, we use CasDrop, a novel
CRISPR-Cas9-based optogenetic technology, to
show that various IDPs phase separate into liquid
condensates that mechanically exclude chromatin
as they grow and preferentially form in low-density,
largely euchromatic regions. A minimal physical
model explains how this stiffness sensitivity arises
from lower mechanical energy associated with deforming
softer genomic regions. Targeted genomic
loci can nonetheless be mechanically pulled together
through surface tension-driven coalescence. Nuclear
condensates may thus function as mechanoactive
chromatin filters, physically pulling in targeted
genomic loci while pushing out non-targeted regions
of the neighboring genome.
237.
Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds.
Abstract:
Liquid-liquid phase separation plays a key role in the
assembly of diverse intracellular structures. However,
the biophysical principles by which phase separation
can be precisely localized within subregions
of the cell are still largely unclear, particularly for
low-abundance proteins. Here, we introduce an oligomerizing
biomimetic system, ‘‘Corelets,’’ and utilize
its rapid and quantitative light-controlled
tunability to map full intracellular phase diagrams,
which dictate the concentrations at which phase
separation occurs and the transition mechanism, in
a protein sequence dependent manner. Surprisingly,
both experiments and simulations show that while
intracellular concentrations may be insufficient for
global phase separation, sequestering protein ligands
to slowly diffusing nucleation centers can
move the cell into a different region of the phase diagram,
resulting in localized phase separation. This
diffusive capture mechanism liberates the cell from
the constraints of global protein abundance and is
likely exploited to pattern condensates associated
with diverse biological processes.
238.
Potassium channel-based optogenetic silencing.
-
Bernal Sierra, YA
-
Rost, BR
-
Pofahl, M
-
Fernandes, AM
-
Kopton, RA
-
Moser, S
-
Holtkamp, D
-
Masala, N
-
Beed, P
-
Tukker, JJ
-
Oldani, S
-
Bönigk, W
-
Kohl, P
-
Baier, H
-
Schneider-Warme, F
-
Hegemann, P
-
Beck, H
-
Seifert, R
-
Schmitz, D
Abstract:
Optogenetics enables manipulation of biological processes with light at high spatio-temporal resolution to control the behavior of cells, networks, or even whole animals. In contrast to the performance of excitatory rhodopsins, the effectiveness of inhibitory optogenetic tools is still insufficient. Here we report a two-component optical silencer system comprising photoactivated adenylyl cyclases (PACs) and the small cyclic nucleotide-gated potassium channel SthK. Activation of this 'PAC-K' silencer by brief pulses of low-intensity blue light causes robust and reversible silencing of cardiomyocyte excitation and neuronal firing. In vivo expression of PAC-K in mouse and zebrafish neurons is well tolerated, where blue light inhibits neuronal activity and blocks motor responses. In combination with red-light absorbing channelrhodopsins, the distinct action spectra of PACs allow independent bimodal control of neuronal activity. PAC-K represents a reliable optogenetic silencer with intrinsic amplification for sustained potassium-mediated hyperpolarization, conferring high operational light sensitivity to the cells of interest.
239.
Membrane dynamics induced by a PIP3 optogenetic tool.
Abstract:
Membrane dynamic structures such as filopodia, lamellipodia, and ruffles have important cellular functions in phagocytosis and cell motility, and in pathological states such as cancer metastasis. Phosphatidylinositol 3,4,5-trisphosphate (PIP3) is a crucial lipid that regulates PIP3 dynamics. Investigations of how PIP3 is involved in these functions have mainly relied on pharmacological interventions, and therefore have not generated detailed spatiotemporal information of membrane dynamics upon PIP3 production. In the present study, we applied an optogenetic approach using the CRY2–CIBN system. Using this system, we revealed that local PIP3 generation induced directional cell motility and membrane ruffles in COS7 cells. Furthermore, combined with structured illumination microscopy (SIM), membrane dynamics were investigated with high spatial resolution. We observed PIP3-induced apical ruffles and unique actin fiber behavior in that a single actin fiber protruded from the plasma membrane was taken up into the plasma membrane without depolymerization. This system has the potential to investigate other high-level cell motility and dynamic behaviors such as cancer cell invasion and wound healing with high spatiotemporal resolution, and could provide new insights of biological sciences for membrane dynamics.
240.
Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9.
-
Bubeck, F
-
Hoffmann, MD
-
Harteveld, Z
-
Aschenbrenner, S
-
Bietz, A
-
Waldhauer, MC
-
Börner, K
-
Fakhiri, J
-
Schmelas, C
-
Dietz, L
-
Grimm, D
-
Correia, BE
-
Eils, R
-
Niopek, D
Abstract:
Anti-CRISPR proteins are powerful tools for CRISPR-Cas9 regulation; the ability to precisely modulate their activity could facilitate spatiotemporally confined genome perturbations and uncover fundamental aspects of CRISPR biology. We engineered optogenetic anti-CRISPR variants comprising hybrids of AcrIIA4, a potent Streptococcus pyogenes Cas9 inhibitor, and the LOV2 photosensor from Avena sativa. Coexpression of these proteins with CRISPR-Cas9 effectors enabled light-mediated genome and epigenome editing, and revealed rapid Cas9 genome targeting in human cells.
241.
A light-gated potassium channel for sustained neuronal inhibition.
-
Alberio, L
-
Locarno, A
-
Saponaro, A
-
Romano, E
-
Bercier, V
-
Albadri, S
-
Simeoni, F
-
Moleri, S
-
Pelucchi, S
-
Porro, A
-
Marcello, E
-
Barsotti, N
-
Kukovetz, K
-
Boender, AJ
-
Contestabile, A
-
Luo, S
-
Moutal, A
-
Ji, Y
-
Romani, G
-
Beltrame, M
-
Del Bene, F
-
Di Luca, M
-
Khanna, R
-
Colecraft, HM
-
Pasqualetti, M
-
Thiel, G
-
Tonini, R
-
Moroni, A
Abstract:
Currently available inhibitory optogenetic tools provide short and transient silencing of neurons, but they cannot provide long-lasting inhibition because of the requirement for high light intensities. Here we present an optimized blue-light-sensitive synthetic potassium channel, BLINK2, which showed good expression in neurons in three species. The channel is activated by illumination with low doses of blue light, and in our experiments it remained active over (tens of) minutes in the dark after the illumination was stopped. This activation caused long periods of inhibition of neuronal firing in ex vivo recordings of mouse neurons and impaired motor neuron response in zebrafish in vivo. As a proof-of-concept application, we demonstrated that in a freely moving rat model of neuropathic pain, the activation of a small number of BLINK2 channels caused a long-lasting (>30 min) reduction in pain sensation.
242.
RalB directly triggers invasion downstream Ras by mobilizing the Wave complex.
-
Zago, G
-
Veith, I
-
Singh, M
-
Fuhrmann, L
-
de Beco, S
-
Remorino, A
-
Takaoka, S
-
Palmeri, M
-
Berger, F
-
Brandon, N
-
El Marjou, A
-
Vincent-Salomon, A
-
Camonis, J
-
Coppey, M
-
Parrini, MC
Abstract:
The two Ral GTPases, RalA and RalB, have crucial roles downstream Ras oncoproteins in human cancers; in particular, RalB is involved in invasion and metastasis. However, therapies targeting Ral signalling are not available yet. By a novel optogenetic approach, we found that light-controlled activation of Ral at plasma-membrane promotes the recruitment of the Wave Regulatory Complex (WRC) via its effector exocyst, with consequent induction of protrusions and invasion. We show that active Ras signals to RalB via two RalGEFs (Guanine nucleotide Exchange Factors), RGL1 and RGL2, to foster invasiveness; RalB contribution appears to be more important than that of MAPK and PI3K pathways. Moreover, on the clinical side, we uncovered a potential role of RalB in human breast cancers by determining that RalB expression at protein level increases in a manner consistent with progression toward metastasis. This work highlights the Ras-RGL1/2-RalB-exocyst-WRC axis as appealing target for novel anti-cancer strategies.
243.
Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells.
-
Baaske, J
-
Gonschorek, P
-
Engesser, R
-
Dominguez-Monedero, A
-
Raute, K
-
Fischbach, P
-
Müller, K
-
Cachat, E
-
Schamel, WWA
-
Minguet, S
-
Davies, JA
-
Timmer, J
-
Weber, W
-
Zurbriggen, MD
Abstract:
Optogenetic switches are emerging molecular tools for studying cellular processes as they offer higher spatiotemporal and quantitative precision than classical, chemical-based switches. Light-controllable gene expression systems designed to upregulate protein expression levels meanwhile show performances superior to their chemical-based counterparts. However, systems to reduce protein levels with similar efficiency are lagging behind. Here, we present a novel two-component, blue light-responsive optogenetic OFF switch (‘Blue-OFF’), which enables a rapid and quantitative down-regulation of a protein upon illumination. Blue-OFF combines the first light responsive repressor KRAB-EL222 with the protein degradation module B-LID (blue light-inducible degradation domain) to simultaneously control gene expression and protein stability with a single wavelength. Blue-OFF thus outperforms current optogenetic systems for controlling protein levels. The system is described by a mathematical model which aids in the choice of experimental conditions such as light intensity and illumination regime to obtain the desired outcome. This approach represents an advancement of dual-controlled optogenetic systems in which multiple photosensory modules operate synergistically. As exemplified here for the control of apoptosis in mammalian cell culture, the approach opens up novel perspectives in fundamental research and applications such as tissue engineering.
244.
Light Control of the Tet Gene Expression System in Mammalian Cells.
Abstract:
Gene expression and its network structure are dynamically altered in multicellular systems during morphological, functional, and pathological changes. To precisely analyze the functional roles of dynamic gene expression changes, tools that manipulate gene expression at fine spatiotemporal resolution are needed. The tetracycline (Tet)-controlled gene expression system is a reliable drug-inducible method, and it is used widely in many mammalian cultured cells and model organisms. Here, we develop a photoactivatable (PA)-Tet-OFF/ON system for precise temporal control of gene expression at single-cell resolution. By integrating the cryptochrome 2-cryptochrome-interacting basic helix-loop-helix 1 (Cry2-CIB1) light-inducible binding switch, expression of the gene of interest is tightly regulated under the control of light illumination and drug application in our PA-Tet-OFF/ON system. This system has a large dynamic range of downstream gene expression and rapid activation/deactivation kinetics. We also demonstrate the optogenetic regulation of exogenous gene expression in vivo, such as in developing and adult mouse brains.
245.
Increasing spatial resolution of photoregulated GTPases through immobilized peripheral membrane proteins.
Abstract:
Light-induced dimerizing systems, e.g. iLID, are an increasingly utilized optogenetics tool to perturb cellular signaling. The major benefit of this technique is that it allows external spatiotemporal control over protein localization with sub-cellular specificity. However, when it comes to local recruitment of signaling components to the plasmamembrane, this precision in localization is easily lost due to rapid diffusion of the membrane anchor. In this study, we explore different approaches of countering the diffusion of peripheral membrane anchors, to the point where we detect immobilized fractions with iFRAP on a timescale of several minutes. One method involves simultaneous binding of the membrane anchor to a secondary structure, the microtubules. The other strategy utilizes clustering of the anchor into large immobile structures, which can also be interlinked by employing tandem recruitable domains. For both approaches, the anchors are peripheral membrane constructs, which also makes them suitable for in vitro use. Upon combining these slower diffusing anchors with recruitable guanine exchange factors (GEFs), we show that we can elicit much more localized morphological responses from Rac1 and Cdc42 as compared to a regular CAAX-box based membrane anchor in living cells. Thanks to these new slow diffusing anchors, more precisely defined membrane recruitment experiments are now possible.
246.
Spatiotemporal control of zebrafish (Danio rerio) gene expression using a light-activated CRISPR activation system.
Abstract:
CRISPR activation (CRISPRa) system is the convenient tool for targeted-gene activation, it has been developed and combined with a lighting-based system that can control transcription initiation spatially and temporally by utilizing photoreceptor derived from plant Arabidopsis thaliana. A blue light photoreceptor the Cryptochrome 2 (CRY2), and its binding partner CIB1 will dimerize by exposure to the blue light and it has been applied to human cells. However, the application of a combination of these two systems to zebrafish cell is still not explored. We performed zebrafish gene activation using p65 and VP64 activators in the zebrafish cells (ZF4). Our study demonstrated that we have successfully controlled the transcription level of ASCL1a, BCL6a, and HSP70 genes using blue light-activated CRISPR activation system. The result showed that using this system, mRNA level expression of ASCL1a, BCL6a, and HSP70 genes increased after irradiated under blue light for several hours and significantly different to those which treated in the dark.
247.
Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids.
Abstract:
We report natural light-oxygen-voltage (LOV) photoreceptors with a blue light-switched, high-affinity (KD ∼ 10-7 M), and direct electrostatic interaction with anionic phospholipids. Membrane localization of one such photoreceptor, BcLOV4 from Botrytis cinerea, is directly coupled to its flavin photocycle, and is mediated by a polybasic amphipathic helix in the linker region between the LOV sensor and its C-terminal domain of unknown function (DUF), as revealed through a combination of bioinformatics, computational protein modeling, structure-function studies, and optogenetic assays in yeast and mammalian cell line expression systems. In model systems, BcLOV4 rapidly translocates from the cytosol to plasma membrane (∼1 second). The reversible electrostatic interaction is nonselective among anionic phospholipids, exhibiting binding strengths dependent on the total anionic content of the membrane without preference for a specific headgroup. The in vitro and cellular responses were also observed with a BcLOV4 homolog and thus are likely to be general across the dikarya LOV class, whose members are associated with regulator of G-protein signaling (RGS) domains. Natural photoreceptors are not previously known to directly associate with membrane phospholipids in a light-dependent manner, and thus this work establishes both a photosensory signal transmission mode and a single-component optogenetic tool with rapid membrane localization kinetics that approaches the diffusion limit.
248.
Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation.
Abstract:
The ability to control the activity of CRISPR-dCas9 with precise spatiotemporal resolution will enable tight genome regulation of user-defined endogenous genes for studying the dynamics of transcriptional regulation. Optogenetic devices with minimal phototoxicity and the capacity for deep tissue penetration are extremely useful for precise spatiotemporal control of cellular behavior and for future clinic translational research. Therefore, capitalizing on synthetic biology and optogenetic design principles, we engineered a far-red light (FRL)-activated CRISPR-dCas9 effector (FACE) device that induces transcription of exogenous or endogenous genes in the presence of FRL stimulation. This versatile system provides a robust and convenient method for precise spatiotemporal control of endogenous gene expression and also has been demonstrated to mediate targeted epigenetic modulation, which can be utilized to efficiently promote differentiation of induced pluripotent stem cells into functional neurons by up-regulating a single neural transcription factor, NEUROG2 This FACE system might facilitate genetic/epigenetic reprogramming in basic biological research and regenerative medicine for future biomedical applications.
249.
Light-controllable Transcription System by Nucleocytoplasmic Shuttling of a Truncated Phytochrome B.
Abstract:
Transcriptional regulation is a useful strategy for gene therapy and for biomedical research. Unlike chemically regulated transcriptional approaches, spatiotemporal control of transcription using optogenetic tools is a powerful technology for the analysis of single cells. For light to penetrate into tissues, it is desired to use photoreceptors absorbing red/far-red light with a low-molecular mass applicable for the use of virus vectors, and a photoswitch using the photoreceptor need to be constructed as a single expression vector. Herein, we describe an optogenetic tool based on Arabidopsis thaliana phytochrome (Phy) B and its binding partner, phytochrome-interacting factor (PIF) 6. We generated a truncated PhyB, which allowed for reversible association with PIF6 by red/far-red light illumination. The red light illumination only for 5 min induced PhyB translocation from cytoplasm into the nucleus by the association with PIF6, resulting in transcriptional activation based on Gal4 DNA-binding domain and the upstream activating sequence of Gal system. The nucleocytoplasmic shuttling vector using PhyB and PIF6 might be applicable for transcriptional regulation in tissue experiments. This article is protected by copyright. All rights reserved.
250.
Optogenetic inhibition of Gαq protein signaling reduces calcium oscillation stochasticity.
Abstract:
As fast terminators of G-protein coupled receptor (GPCR) signaling, regulators of G-protein signaling (RGS) serve critical roles in fine-tuning second messenger levels and, consequently, cellular responses to external stimuli. Here, we report the creation of an optogenetic RGS2 (opto-RGS2) that suppresses agonist-evoked calcium oscillations by the inactivation of Gαq protein. In this system, cryptochrome-mediated hetero-dimerization of the catalytic RGS2-box with its N-terminal amphipathic helix reconstitutes a functional membrane-localized complex that can dynamically suppress store-operated release of calcium. Engineered opto-RGS2 cell lines were used to establish the role of RGS2 as a key inhibitory feedback regulator of the stochasticity of the Gαq-mediated calcium spike timing. RGS2 reduced the stochasticity of carbachol-stimulated calcium oscillations, and the feedback inhibition was coupled to the global calcium elevation by calmodulin/RGS2 interactions. The identification of a critical negative feedback circuit exemplifies the utility of optogenetic approaches for interrogating RGS/GPCR biology and calcium encoding principles through temporally precise molecular gain-of-function.