Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 39 results
1.

Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications.

blue cyan near-infrared red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Int J Mol Sci, 29 Sep 2023 DOI: 10.3390/ijms241914741 Link to full text
Abstract: Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
2.

Selective induction of programmed cell death using synthetic biology tools.

blue green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Semin Cell Dev Biol, 17 Aug 2023 DOI: 10.1016/j.semcdb.2023.07.012 Link to full text
Abstract: Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
3.

Shedding light on current trends in molecular optogenetics.

blue green red violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Chem Biol, 18 Aug 2022 DOI: 10.1016/j.cbpa.2022.102196 Link to full text
Abstract: Molecular optogenetics is a highly dynamic research field. In the past two years, the field was characterized by the development of new allosteric switches as well as the forward integration of optogenetics research towards application. Further, two areas of research have significantly gathered momentum, the use of optogenetics to control liquid-liquid phase separation as well as the application of optogenetic tools in the extracellular space. Here, we review these areas and discuss future directions.
4.

Optogenetics for transcriptional programming and genetic engineering.

blue cyan near-infrared red UV violet Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Genet, 20 Jun 2022 DOI: 10.1016/j.tig.2022.05.014 Link to full text
Abstract: Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.
5.

Combinatorial Approaches for Efficient Design of Photoswitchable Protein-Protein Interactions as In Vivo Actuators.

blue near-infrared red Fluorescent proteins LOV domains Phytochromes Review
Front Bioeng Biotechnol, 8 Feb 2022 DOI: 10.3389/fbioe.2022.844405 Link to full text
Abstract: Light switchable two-component protein dimerization systems offer versatile manipulation and dissection of cellular events in living systems. Over the past 20 years, the field has been driven by the discovery of photoreceptor-based interaction systems, the engineering of light-actuatable binder proteins, and the development of photoactivatable compounds as dimerization inducers. This perspective is to categorize mechanisms and design approaches of these dimerization systems, compare their advantages and limitations, and bridge them to emerging applications. Our goal is to identify new opportunities in combinatorial protein design that can address current engineering challenges and expand in vivo applications.
6.

Optophysiology: Illuminating cell physiology with optogenetics.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Physiol Rev, 24 Jan 2022 DOI: 10.1152/physrev.00021.2021 Link to full text
Abstract: Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology") and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
7.

Directed evolution approaches for optogenetic tool development.

blue green near-infrared red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Biochem Soc Trans, 17 Dec 2021 DOI: 10.1042/bst20210700 Link to full text
Abstract: Photoswitchable proteins enable specific molecular events occurring in complex biological settings to be probed in a rapid and reversible fashion. Recent progress in the development of photoswitchable proteins as components of optogenetic tools has been greatly facilitated by directed evolution approaches in vitro, in bacteria, or in yeast. We review these developments and suggest future directions for this rapidly advancing field.
8.

Structure-based design of a photoswitchable affibody scaffold.

blue Fluorescent proteins Background
Protein Sci, 29 Sep 2021 DOI: 10.1002/pro.4196 Link to full text
Abstract: Photo-control of affinity reagents offers a general approach for high-resolution spatiotemporal control of diverse molecular processes. In an effort to develop general design principles for a photo-controlled affinity reagent, we took a structure-based approach to the design of a photoswitchable Z-domain, among the simplest of affinity reagent scaffolds. A chimera, designated Z-PYP, of photoactive yellow protein (PYP) and the Z-domain, was designed based on the concept of mutually exclusive folding. NMR analysis indicated that, in the dark, the PYP domain of the chimera was folded, and the Z-domain was unfolded. Blue light caused loss of structure in PYP and a two- to sixfold change in the apparent affinity of Z-PYP for its target as determined using size exclusion chromatography, UV-Vis based assays, and enyzme-linked immunosorbent assay (ELISA). A thermodynamic model indicated that mutations to decrease Z-domain folding energy would alter target affinity without loss of switching. This prediction was confirmed experimentally with a double alanine mutant in helix 3 of the Z-domain of the chimera (Z-PYP-AA) showing >30-fold lower dark-state binding and no loss in switching. The effect of decreased dark-state binding affinity was tested in a two-hybrid transcriptional control format and enabled pronounced light/dark differences in yeast growth in vivo. Finally, the design was transferable to the αZ-Taq affibody enabling tunable light-dependent binding both in vitro and in vivo to the Z-Taq target. This system thus provides a framework for the focused development of light switchable affibodies for a range of targets.
9.

A unique photochromic UV-A sensor protein, Rc-PYP, interacting with the PYP-binding protein.

blue Fluorescent proteins Background
Phys Chem Chem Phys, 16 Aug 2021 DOI: 10.1039/d1cp02731j Link to full text
Abstract: Photoactive yellow protein (PYP) is one of the typical light sensor proteins. Although its photoreaction has been extensively studied, no downstream partner protein has been identified to date. In this study, the intermolecular interaction dynamics observed between PYP from Rhodobacter capsulatus (Rc-PYP) and a possible downstream protein, PYP-binding protein (PBP), were investigated. It was found that UV light induced a long-lived product (pUV*), which interacts with PBP to form a stable hetero-hexamer (Complex-2). The reaction scheme for this interaction was revealed using transient absorption and transient grating methods. Time-resolved diffusion detection showed that a hetero-trimer (Complex-1) is formed transiently, which produced Complex-2 via a second-order reaction. Any other intermediates, including those from pBL, do not interact with PBP. The reaction scheme and kinetics are determined. Interestingly, long-lived Complex-2 dissociates upon excitation with blue light. These results demonstrate that Rc-PYP is a photochromic and new type of UV sensor to sense the relative intensities of UV-A and blue light.
10.

Clinical applicability of optogenetic gene regulation.

blue green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biotechnol Bioeng, 20 Jul 2021 DOI: 10.1002/bit.27895 Link to full text
Abstract: The field of optogenetics is rapidly growing in relevance and number of developed tools. Amongst other things, the optogenetic repertoire includes light-responsive ion channels and methods for gene regulation. This review will be confined to the optogenetic control of gene expression in mammalian cells as suitable models for clinical applications. Here optogenetic gene regulation might offer an excellent method for spatially and timely regulated gene and protein expression in cell therapeutic approaches. Well-known systems for gene regulation, such as the LOV-, CRY2/CIB-, PhyB/PIF-systems, as well as other, in mammalian cells not yet fully established systems will be described. Advantages and disadvantages with regard to clinical applications are outlined in detail. Among the many unanswered questions concerning the application of optogenetics, we discuss items such as the use of exogenous chromophores and their effects on the biology of the cells and methods for a gentle, but effective gene transfection method for optogenetic tools for in vivo applications. This article is protected by copyright. All rights reserved.
11.

Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Annu Rev Biomed Eng, 15 Mar 2021 DOI: 10.1146/annurev-bioeng-083120-111648 Link to full text
Abstract: Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 23 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
12.

Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Biol, 14 Jan 2021 DOI: 10.1002/adbi.202000180 Link to full text
Abstract: Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub‐micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever‐increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
13.

Structural and spectroscopic characterization of photoactive yellow protein and photoswitchable fluorescent protein constructs containing heavy atoms.

blue PYP in vitro
J Photochem Photobiol A Chem, 30 Jun 2020 DOI: 10.1016/j.jphotochem.2020.112738 Link to full text
Abstract: Photo-induced structural rearrangements of chromophore-containing proteins are essential for various light-dependent signaling pathways and optogenetic applications. Ultrafast structural and spectroscopic methods have offered insights into these structural rearrangements across many timescales. However, questions still remain about exact mechanistic details, especially regarding photoisomerization of the chromophore within these proteins femtoseconds to picoseconds after photoexcitation. Instrumentation advancements for time-resolved crystallography and ultrafast electron diffraction provide a promising opportunity to study these reactions, but achieving enough signal-to-noise is a constant challenge. Here we present four new photoactive yellow protein constructs and one new fluorescent protein construct that contain heavy atoms either within or around the chromophore and can be expressed with high yields. Structural characterization of these constructs, most at atomic resolution, show minimal perturbation caused by the heavy atoms compared to wild-type structures. Spectroscopic studies report the effects of the heavy atom identity and location on the chromophore's photophysical properties. None of the substitutions prevent photoisomerization, although certain rates within the photocycle may be affected. Overall, these new proteins containing heavy atoms are ideal samples for state-of-theart time-resolved crystallography and electron diffraction experiments to elucidate crucial mechanistic information of photoisomerization.
14.

Yeast Two Hybrid Screening of Photo-Switchable Protein-Protein Interaction Libraries.

blue PYP BEAS-2B in vitro S. cerevisiae
J Mol Biol, 17 Mar 2020 DOI: 10.1016/j.jmb.2020.03.011 Link to full text
Abstract: Although widely used in the detection and characterization of protein-protein interactions, Y2H screening has been under-used for the engineering of new optogenetic tools or the improvement of existing tools. Here we explore the feasibility of using Y2H selection and screening to evaluate libraries of photoswitchable protein-protein interactions. We targeted the interaction between circularly permuted photoactive yellow protein (cPYP) and its binding partner BoPD (binder of PYP dark state) by mutating a set of four surface residues of cPYP that contribute to the binding interface. A library of ~10,000 variants was expressed in yeast together with BoPD in a Y2H format. An initial selection for the cPYP/BoPD interaction was performed using a range of concentrations of the cPYP chromophore. As expected, the majority (>90% of cPYP variants no longer bound to BoPD). Replica plating was the used to evaluate the photoswitchability of the surviving clones. Photoswitchable cPYP variants with BoPD affinities equal to, or higher than, native cPYP were recovered in addition to variants with altered photocycles and binders that interacted with BoPD as apo-proteins. Y2H results reflected protein-protein interaction affinity, expression, photoswitchability and chromophore uptake, and correlated well with results obtained both in vitro and in mammalian cells. Thus, by systematic variation of selection parameters, Y2H screens can be effectively used to generate new optogenetic tools for controlling protein-protein interactions for use in diverse settings.
15.

A time-dependent role for the transcription factor CREB in neuronal allocation to an engram underlying a fear memory revealed using a novel in vivo optogenetic tool to modulate CREB function.

blue PYP HEK293T mouse in vivo primary mouse hippocampal neurons Endogenous gene expression
Neuropsychopharmacology, 14 Dec 2019 DOI: 10.1038/s41386-019-0588-0 Link to full text
Abstract: The internal representation of an experience is thought to be encoded by long-lasting physical changes to the brain ("engrams") (Josselyn et al. Nat Rev Neurosci 16:521-534, 2015; Josselyn et al. J Neurosci 37:4647-4657, 2017; Schacter. 2001; Tonegawa et al. Neuron 87:918-931, 2015). Previously, we (Han et al. Science 316:457-460, 2007) and others (Zhou et al. Nat Neurosci 12:1438-1443, 2009) showed within the lateral amygdala (LA), a region critical for auditory conditioned fear, eligible neurons compete against one other for allocation to an engram. Neurons with relatively higher function of the transcription factor CREB were more likely to be allocated to the engram. In these studies, though, CREB function was artificially increased for several days before training. Precisely when increased CREB function is important for allocation remains an unanswered question. Here, we took advantage of a novel optogenetic tool (opto-DN-CREB) (Ali et al. Chem Biol 22:1531-1539, 2015) to gain spatial and temporal control of CREB function in freely behaving mice. We found increasing CREB function in a small, random population of LA principal neurons in the minutes-hours, but not 24 h, before training was sufficient to enhance memory, likely because these neurons were preferentially allocated to the underlying engram. However, similarly increasing CREB activity in a small population of random LA neurons immediately after training disrupted subsequent memory retrieval, likely by disrupting the precise spatial and temporal patterns of offline post-training neuronal activity and/or function required for consolidation. These findings reveal the importance of the timing of CREB activity in regulating allocation and subsequent memory retrieval, and further, highlight the potential of optogenetic approaches to control protein function with temporal specificity in behaving animals.
16.

Structural Basis of Design and Engineering for Advanced Plant Optogenetics.

blue green red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Plant Sci, 4 Nov 2019 DOI: 10.1016/j.tplants.2019.10.002 Link to full text
Abstract: In optogenetics, light-sensitive proteins are specifically expressed in target cells and light is used to precisely control the activity of these proteins at high spatiotemporal resolution. Optogenetics initially used naturally occurring photoreceptors to control neural circuits, but has expanded to include carefully designed and engineered photoreceptors. Several optogenetic constructs are based on plant photoreceptors, but their application to plant systems has been limited. Here, we present perspectives on the development of plant optogenetics, considering different levels of design complexity. We discuss how general principles of light-driven signal transduction can be coupled with approaches for engineering protein folding to develop novel optogenetic tools. Finally, we explore how the use of computation, networks, circular permutation, and directed evolution could enrich optogenetics.
17.

Detection of Incorporation of p-Coumaric Acid into Photoactive Yellow Protein Variants in Vivo.

blue Fluorescent proteins Background
Biochemistry, 30 May 2019 DOI: 10.1021/acs.biochem.9b00279 Link to full text
Abstract: We report the design and characterization of photoactive yellow protein (PYP)-blue fluorescent protein (mTagBFP) fusion constructs that permit the direct assay of reconstitution and function of the PYP domain. These constructs allow for in vivo testing of co-expression systems for enzymatic production of the p-coumaric acid-based PYP chromophore, via the action of tyrosine ammonia lyase and p-coumaroyl-CoA ligase (pCL or 4CL). We find that different 4CL enzymes can function to reconstitute PYP, including 4CL from Arabidopsis thaliana that can produce ∼100% holo-PYP protein under optimal conditions. mTagBFP fusion constructs additionally enable rapid analysis of effects of mutations on PYP photocycles. We use this mTagBFP fusion strategy to demonstrate in vivo reconstitution of several PYP-based optogenetic tools in Escherichia coli via a biosynthesized chromophore, an important step for the use of these optogenetic tools in vivo in diverse hosts.
18.

A yeast system for discovering optogenetic inhibitors of eukaryotic translation initiation.

blue cyan AsLOV2 Dronpa145K/N PYP RsLOV S. cerevisiae
ACS Synth Biol, 22 Mar 2019 DOI: 10.1021/acssynbio.8b00386 Link to full text
Abstract: The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis non-invasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, LOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photo-activated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate of human eIF4E-depednednt translation initiation in a mechanistically defined manner.
19.

Discovering selective binders for photoswitchable proteins using phage display.

blue AsLOV2 PYP BEAS-2B
ACS Synth Biol, 11 Sep 2018 DOI: 10.1021/acssynbio.8b00123 Link to full text
Abstract: Nature provides an array of proteins that change conformation in response to light. The discovery of a complementary array of proteins that bind only the light-state or dark-state conformation of their photoactive partner proteins would allow each light-switchable protein to be used as an optogenetic tool to control protein-protein interactions. However, as many photoactive proteins have no known binding partner, the advantages of optogenetic control - precise spatial and temporal resolution - are currently restricted to a few well-defined natural systems. In addition, the affinities and kinetics of native interactions are often sub-optimal and are difficult to engineer in the absence of any structural information. We report a phage display strategy using a small scaffold protein that can be used to discover new binding partners for both light and dark states of a given light-switchable protein. We used our approach to generate binding partners that interact specifically with the light state or the dark state conformation of two light-switchable proteins: PYP, a test case for a protein with no known partners, and AsLOV2 a well-characterized protein. We show that these novel light-switchable protein-protein interactions can function in living cells to control subcellular localization processes.
20.

Blue-Light Receptors for Optogenetics.

blue red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chem Rev, 9 Jul 2018 DOI: 10.1021/acs.chemrev.8b00163 Link to full text
Abstract: Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
21.

Optogenetics: A Primer for Chemists.

blue green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chembiochem, 19 Apr 2018 DOI: 10.1002/cbic.201800013 Link to full text
Abstract: The field of optogenetics uses genetically encoded, light-responsive proteins to control physiological processes. This technology has been hailed as the one of the ten big ideas in brain science in the past decade,[1] the breakthrough of the decade,[2] and the method of the year in 2010[3] and again in 2014[4]. The excitement evidenced by these proclamations is confirmed by a couple of impressive numbers. The term "optogenetics" was coined in 2006.[5] As of December 2017, "optogenetics" is found in the title or abstract of almost 1600 currently funded National Institutes of Health grants. In addition, nearly 600 reviews on optogenetics have appeared since 2006, which averages out to approximately one review per week! However, in spite of these impressive numbers, the potential applications and implications of optogenetics are not even close to being fully realized. This is due, in large part, to the challenges associated with the design of optogenetic analogs of endogenous proteins. This review is written from a chemist's perspective, with a focus on the molecular strategies that have been developed for the construction of optogenetic proteins.
22.

Strategies for the photo-control of endogenous protein activity.

blue Cryptochromes Fluorescent proteins LOV domains Review
Curr Opin Struct Biol, 28 Nov 2016 DOI: 10.1016/j.sbi.2016.11.014 Link to full text
Abstract: Photo-controlled or 'optogenetic' effectors interfacing with endogenous protein machinery allow the roles of endogenous proteins to be probed. There are two main approaches being used to develop optogenetic effectors: (i) caging strategies using photo-controlled conformational changes, and (ii) protein relocalization strategies using photo-controlled protein-protein interactions. Numerous specific examples of these approaches have been reported and efforts to develop general methods for photo-control of endogenous proteins are a current focus. The development of improved screening and selection methods for photo-switchable proteins would advance the field.
23.

Natural Resources for Optogenetic Tools.

blue green red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Methods Mol Biol, 2016 DOI: 10.1007/978-1-4939-3512-3_2 Link to full text
Abstract: Photoreceptors are found in all kingdoms of life and mediate crucial responses to environmental challenges. Nature has evolved various types of photoresponsive protein structures with different chromophores and signaling concepts for their given purpose. The abundance of these signaling proteins as found nowadays by (meta-)genomic screens enriched the palette of optogenetic tools significantly. In addition, molecular insights into signal transduction mechanisms and design principles from biophysical studies and from structural and mechanistic comparison of homologous proteins opened seemingly unlimited possibilities for customizing the naturally occurring proteins for a given optogenetic task. Here, a brief overview on the photoreceptor concepts already established as optogenetic tools in natural or engineered form, their photochemistry and their signaling/design principles is given. Finally, so far not regarded photosensitive modules and protein architectures with potential for optogenetic application are described.
24.

Optogenetic Inhibitor of the Transcription Factor CREB.

blue PYP HEK293T in vitro primary mouse cortical neurons Endogenous gene expression Extracellular optogenetics
Chem Biol, 19 Nov 2015 DOI: 10.1016/j.chembiol.2015.09.018 Link to full text
Abstract: Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue-light-controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light-driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events.
25.

Applications of hydrogen deuterium exchange (HDX) for the characterization of conformational dynamics in light-activated photoreceptors.

blue red UV BLUF domains Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Mol Biosci, 23 Jun 2015 DOI: 10.3389/fmolb.2015.00033 Link to full text
Abstract: Rational design of optogenetic tools is inherently linked to the understanding of photoreceptor function. Structural analysis of elements involved in signal integration in individual sensor domains provides an initial idea of their mode of operation, but understanding how local structural rearrangements eventually affect signal transmission to output domains requires inclusion of the effector regions in the characterization. However, the dynamic nature of these assemblies renders their structural analysis challenging and therefore a combination of high- and low-resolution techniques is required to appreciate functional aspects of photoreceptors. This review focuses on the potential of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) for complementing the structural characterization of photoreceptors. In this respect, the ability of HDX-MS to provide information on conformational dynamics and the possibility to address multiple functionally relevant states in solution render this methodology ideally suitable. We highlight recent examples demonstrating the potential of HDX-MS and discuss how these results can help to improve existing optogenetic systems or guide the design of novel optogenetic tools.
Submit a new publication to our database