Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 531 results
1.

Optogenetic Control of Receptor-mediated Growth Cone Dynamics in Neurons.

blue CRY2/CIB1 Cos-7 rat cortical neurons rat dorsal root ganglion NSCs Control of cytoskeleton / cell motility / cell shape Neuronal activity control
Mol Biol Cell, 20 Dec 2024 DOI: 10.1091/mbc.e23-07-0268 Link to full text
Abstract: Development of neuronal connections is spatially and temporally controlled by extracellular cues which often activate their cognate cell surface receptors and elicit localized cellular responses. Here, we demonstrate the use of an optogenetic tool to activate receptor signaling locally to induce actin-mediated growth cone remodeling in neurons. Based on the light-induced interaction of light between Cryptochrome 2 (CRY2) and CIB1, we generated a bicistronic vector to co-expresses CRY2 fused to the intracellular domain of a guidance receptor and a membrane-anchored CIB1. When expressed in primary neurons, activation of the growth inhibitory PlexA4 receptor induced growth cone collapse, while activation of the growth stimulating TrkA receptor increased growth cone size. Moreover, local activation of either receptor not only elicited the predicted response in light-activated growth cones, but also an opposite response in neighboring no-light growth cones of the same neuron. Finally, this tool was used to reorient growth cones towards or away from light activation and to stimulate local actin polymerization for branch initiation along axonal shafts. These studies demonstrate the use of an optogenetic tool for precise spatial and temporal control of receptor signaling in neurons and support its future application in investigating cellular mechanisms of neuronal development and plasticity. [Media: see text] [Media: see text] [Media: see text] [Media: see text].
2.

Near-Infrared Optogenetic Nanosystem for Spatiotemporal Control of CRISPR-Cas9 Gene Editing and Synergistic Photodynamic Therapy.

blue CRY2/CIB1 COLO 16 Nucleic acid editing
ACS Appl Mater Interfaces, 16 Dec 2024 DOI: 10.1021/acsami.4c18656 Link to full text
Abstract: Controlling CRISPR/Cas9 gene editing at the spatiotemporal resolution level, especially for in vivo applications, remains a great challenge. Here, we developed a near-infrared (NIR) light-activated nanophotonic system (UCPP) for controlled CRISPR-Cas9 gene editing and synergistic photodynamic therapy (PDT). Lanthanide-doped upconversion nanoparticles are not only employed as carriers for intracellular plasmid delivery but also serve as the nanotransducers to convert NIR light (980 nm) into visible light with emission at 460 and 650 nm, which could result in simultaneous activation of gene editing and PDT processes, respectively. Such unique design not only achieves light-controlled precise gene editing of hypoxia-inducible factor 1α with minimal off-target effect, which effectively ameliorates the hypoxic state at tumor sites, but also facilitates the deep-seated PDT process with synergistic antitumor effect. This optogenetically activatable CRISPR-Cas9 nanosystem holds great potential for spatially controlled in vivo gene editing and targeted cancer therapy.
3.

Optimum blue light exposure: a means to increase cell-specific productivity in Chinese hamster ovary cells.

blue BLUF domains Cryptochromes LOV domains CHO DP-12 Background
Appl Microbiol Biotechnol, 5 Dec 2024 DOI: 10.1007/s00253-024-13363-4 Link to full text
Abstract: Research for biopharmaceutical production processes with mammalian cells steadily aims to enhance the cell-specific productivity as a means for optimizing total productivities of bioreactors. Whereas current technologies such as pH, temperature, and osmolality shift require modifications of the cultivation medium, the use of optogenetic switches in recombinant producer cells might be a promising contact-free alternative. However, the proper application of optogenetically engineered cells requires a detailed understanding of basic cellular responses of cells that do not yet contain the optogenetic switches. The knowhow of ideal light exposure to enable the optimum use of related approaches is missing so far. Consequently, the current study set out to find optimum conditions for IgG1 producing Chinese hamster ovary (CHO) cells which were exposed to blue LED light. Growth characteristics, cell-specific productivity using enzyme-linked immunosorbent assay, as well as cell cycle distribution using flow cytometry were analyzed. Whereas too harsh light exposure causes detrimental growth effects that could be compensated with antioxidants, a surprising boost of cell-specific productivity by 57% occurred at optimum high light doses. The increase coincided with an increased number of cells in the G1 phase of the cell cycle after 72 h of illumination. The results present a promising new approach to boost biopharmaceutical productivity of mammalian cells simply by proper light exposure without any further optogenetic engineering. KEY POINTS: • Blue LED light hinders growth in CHO DP-12 cells • Antioxidants protect to a certain degree from blue light effects • Illumination with blue LED light raises cell-specific productivity.
4.

In vivo regulation of an endogenously-tagged protein by a light-regulated kinase.

blue CRY2/CIB1 D. melanogaster in vivo Signaling cascade control Developmental processes
bioRxiv, 27 Nov 2024 DOI: 10.1101/2024.11.27.625702 Link to full text
Abstract: Post-translational modifications (PTMs) are indispensable modulators of protein activity. Most cellular behaviours, from cell division to cytoskeletal organization, are controlled by PTMs, their miss-regulation being associated with a plethora of human diseases. Traditionally, the role of PTMs has been studied employing biochemical techniques. However, these approaches fall short when studying PTM dynamics in vivo. In recent years, functionalized protein binders have allowed the post-translational modification of endogenous proteins by bringing an enzymatic domain in close proximity to the protein they recognize. To date, most of these methods lack the temporal control necessary to understand the complex effects triggered by PTMs. In this study, we have developed a method to phosphorylate endogenous Myosin in a light-inducible manner. The method relies both on nanobody-targeting and light-inducible activation in order to achieve both tight specificity and temporal control. We demonstrate that this technology is able to disrupt cytoskeletal dynamics during Drosophila embryonic development. Together, our results highlight the potential of combining optogenetics and protein binders for the study of the proteome in multicellular systems.
5.

Charge-neutralized polyethylenimine-lipid nanoparticles for gene transfer to human embryonic stem cells.

blue CRY2/CIB1 hESCs Transgene expression
Bioorg Med Chem, 16 Nov 2024 DOI: 10.1016/j.bmc.2024.118008 Link to full text
Abstract: Gene delivery is fundamentally crucial for the genetic manipulation of stem cells. Here, we present a straightforward approach to create a library of charge-neutralized polyethylenimine (PEI)-lipid nanoparticles designed for stem cell transfection. These lipid nanoparticles were formulated using small, branched PEI and lipidic anhydrides. Remarkably, over 15% of the lipid nanoparticles demonstrated high transfection efficiency across various cell types, surpassing the efficiency of both Lipofectamine 2000 and FuGENE HD. A structure-activity analysis indicated that the length and ratio of hydrophobic alkyl substitutions were critical parameters for efficient gene delivery. Notably, the transfection efficiency was higher than that of the original cation PEI. Our optimized PEI-lipid system enabled highly effective plasmid DNA delivery and successfully co-transferred two plasmid DNAs into difficult-to-transfect human embryonic stem cells (hESCs), facilitating optogenetic manipulation within these cells.
6.

Src kinase slows collective rotation of confined epithelial cell monolayers.

blue CRY2/CIB1 MDCK Signaling cascade control Control of cell-cell / cell-material interactions
Soft Matter, 15 Nov 2024 DOI: 10.1039/d4sm00827h Link to full text
Abstract: Collective cell migration is key during development, wound healing, and metastasis and relies on coordinated cell behaviors at the group level. Src kinase is a key signalling protein for the physiological functions of epithelia, as it regulates many cellular processes, including adhesion, motility, and mechanotransduction. Its overactivation is associated with cancer aggressiveness. Here, we take advantage of optogenetics to precisely control Src activation in time and show that its pathological-like activation slows the collective rotation of epithelial cells confined into circular adhesive patches. We interpret velocity, force, and stress data during period of non-activation and period of activation of Src thanks to a hydrodynamic description of the cell assembly as a polar active fluid. Src activation leads to a 2-fold decrease in the ratio of polar angle to friction, which could result from increased adhesiveness at the cell-substrate interface. Measuring internal stress allows us to show that active stresses are subdominant compared to traction forces. Our work reveals the importance of fine-tuning the level of Src activity for coordinated collective behaviors.
7.

Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT.

blue CRY2/CIB1 CRY2/CRY2 Cos-7 HEK293T Signaling cascade control
Nat Chem Biol, 14 Nov 2024 DOI: 10.1038/s41589-024-01770-7 Link to full text
Abstract: The post-translational modification of intracellular proteins through O-linked β-N-acetylglucosamine (O-GlcNAc) is a conserved regulatory mechanism in multicellular organisms. Catalyzed by O-GlcNAc transferase (OGT), this dynamic modification has an essential role in signal transduction, gene expression, organelle function and systemic physiology. Here, we present Opto-OGT, an optogenetic probe that allows for precise spatiotemporal control of OGT activity through light stimulation. By fusing a photosensitive cryptochrome protein to OGT, Opto-OGT can be robustly and reversibly activated with high temporal resolution by blue light and exhibits minimal background activity without illumination. Transient activation of Opto-OGT results in mTORC activation and AMPK suppression, which recapitulate nutrient-sensing signaling. Furthermore, Opto-OGT can be customized to localize to specific subcellular sites. By targeting OGT to the plasma membrane, we demonstrate the downregulation of site-specific AKT phosphorylation and signaling outputs in response to insulin stimulation. Thus, Opto-OGT is a powerful tool for defining the role of O-GlcNAcylation in cell signaling and physiology.
8.

Optogenetic Control of Condensates: Principles and Applications.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
J Mol Biol, 24 Oct 2024 DOI: 10.1016/j.jmb.2024.168835 Link to full text
Abstract: Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
9.

Precise Control of Intracellular Trafficking and Receptor-Mediated Endocytosis in Living Cells and Behaving Animals.

blue CRY2/CIB1 C. elegans in vivo Cos-7 Control of vesicular transport Neuronal activity control
Adv Sci (Weinh), 14 Oct 2024 DOI: 10.1002/advs.202405568 Link to full text
Abstract: Intracellular trafficking, an extremely complex network, dynamically orchestrates nearly all cellular activities. A versatile method that enables the manipulation of target transport pathways with high spatiotemporal accuracy in vitro and in vivo is required to study how this network coordinates its functions. Here, a new method called RIVET (Rapid Immobilization of target Vesicles on Engaged Tracks) is presented. Utilizing inducible dimerization between target vesicles and selective cytoskeletons, RIVET can spatiotemporally halt numerous intracellular trafficking pathways within seconds in a reversible manner. Its highly specific perturbations allow for the real-time dissection of the dynamic relationships among different trafficking pathways. Moreover, RIVET is capable of inhibiting receptor-mediated endocytosis. This versatile system can be applied from the cellular level to whole organisms. RIVET opens up new avenues for studying intracellular trafficking under various physiological and pathological conditions and offers potential strategies for treating trafficking-related disorders.
10.

Optogenetic Control of the Mitochondrial Protein Import in Mammalian Cells.

blue AsLOV2 CRY2/CIB1 HEK293T Signaling cascade control Organelle manipulation
Cells, 9 Oct 2024 DOI: 10.3390/cells13191671 Link to full text
Abstract: Mitochondria provide cells with energy and regulate the cellular metabolism. Almost all mitochondrial proteins are nuclear-encoded, translated on ribosomes in the cytoplasm, and subsequently transferred to the different subcellular compartments of mitochondria. Here, we developed OptoMitoImport, an optogenetic tool to control the import of proteins into the mitochondrial matrix via the presequence pathway on demand. OptoMitoImport is based on a two-step process: first, light-induced cleavage by a TEV protease cuts off a plasma membrane-anchored fusion construct in close proximity to a mitochondrial targeting sequence; second, the mitochondrial targeting sequence preceding the protein of interest recruits to the outer mitochondrial membrane and imports the protein fused to it into mitochondria. Upon reaching the mitochondrial matrix, the matrix processing peptidase cuts off the mitochondrial targeting sequence and releases the protein of interest. OptoMitoImport is available as a two-plasmid system as well as a P2A peptide or IRES sequence-based bicistronic system. Fluorescence studies demonstrate the release of the plasma membrane-anchored protein of interest through light-induced TEV protease cleavage and its localization to mitochondria. Cell fractionation experiments confirm the presence of the peptidase-cleaved protein of interest in the mitochondrial fraction. The processed product is protected from proteinase K treatment. Depletion of the membrane potential across the inner mitochondria membrane prevents the mitochondrial protein import, indicating an import of the protein of interest by the presequence pathway. These data demonstrate the functionality of OptoMitoImport as a generic system with which to control the post-translational mitochondrial import of proteins via the presequence pathway.
11.

Rho/Rok-dependent regulation of actomyosin contractility at tricellular junctions controls epithelial permeability in Drosophila.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
bioRxiv, 5 Oct 2024 DOI: 10.1101/2024.10.04.616625 Link to full text
Abstract: Cell contacts in epithelia are remodeled to regulate paracellular permeability and to control passage of migrating cells, but how barrier function is modulated while preserving epithelial integrity is not clear. In the follicular epithelium of Drosophila ovaries, tricellular junctions (TCJs) open transiently in a process termed patency to allow passage of externally produced yolk proteins for uptake by the oocyte. Here we show that modulation of actomyosin contractility at cell vertices controls TCJ permeability. Before patency, circumferential actomyosin bundles are anchored at apical follicle cell vertices, where tension-sensing junctional proteins, Rho-associated kinase (Rok), and active Myosin II accumulate and maintain vertices closed. TCJ opening is initiated by redistribution of Myosin II from circumferential bundles to a medial pool, accompanied by decreasing tension on vertices. This transition requires activation of Cofilin-dependent F-actin disassembly by the phosphatase Slingshot and Myosin II inactivation by Myosin light chain phosphatase, and is counteracted by Rok. Accordingly, constitutive activation of Myosin or of Rho signaling prevent vertex opening, whereas reduced Myosin II or Rok activity cause excessive and premature vertex opening. Thus, opening of intercellular gaps in the follicular epithelium does not require actomyosin-based forces, but relies on a reduction of actomyosin contractility. Conversely, F-actin assembly is required for closing intercellular gaps after patency. Our findings are consistent with a force transduction model in which TCJ integrity is maintained by vertex-anchored contractile actomyosin. We propose that the cell-type-specific organization of actomyosin at cell vertices determines the mode of contractility-dependent regulation of epithelial permeability.
12.

Optogenetic Tools for Regulating RNA Metabolism and Functions.

blue red Cryptochromes LOV domains Phytochromes Review
Chembiochem, 24 Sep 2024 DOI: 10.1002/cbic.202400615 Link to full text
Abstract: RNA molecules play a vital role in linking genetic information with various cellular processes. In recent years, a variety of optogenetic tools have been engineered for regulating cellular RNA metabolism and functions. These highly desirable tools can offer non-intrusive control with spatial precision, remote operation, and biocompatibility. Here, we would like to review these currently available approaches that can regulate RNAs with light: from non-genetically encodable chemically modified oligonucleotides to genetically encoded RNA aptamers that recognize photosensitive small-molecule or protein ligands. Some key applications of these optogenetic tools will also be highlighted to illustrate how they have been used for regulating all aspects of the RNA life cycle: from RNA synthesis, maturation, modification, and translation to their degradation, localization, and phase separation control. Some current challenges and potential practical utilizations of these RNA optogenetic tools will also be discussed.
13.

Precision in situ cryo-correlative light and electron microscopy of optogenetically-positioned organelles.

blue CRY2/CIB1 PtK2 (NBL-5) Control of vesicular transport Organelle manipulation
J Cell Sci, 23 Sep 2024 DOI: 10.1242/jcs.262163 Link to full text
Abstract: Unambiguous targeting of cellular structures for in situ cryo-electron microscopy in the heterogeneous, dense, and compacted environment of the cytoplasm remains challenging. Here we have developed a cryogenic correlative light and electron microscopy (cryo-CLEM) workflow which combines thin cells grown on a mechanically defined substratum to rapidly analyse organelles and macromolecular complexes by cryo-electron tomography (cryo-ET). We coupled these advancements with optogenetics to redistribute perinuclear-localised organelles to the cell periphery, allowing visualisation of organelles otherwise positioned in cellular regions too thick for cryo-ET. This reliable and robust workflow allows for fast in situ analyses without the requirement for cryo-focused ion beam milling. Using this protocol, cells can be frozen, imaged by cryo-fluorescence microscopy and be ready for batch cryo-ET within a day.
14.

Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping.

blue AsLOV2 CRY2/CIB1 CUTLL1 HEK293 Endogenous gene expression Organelle manipulation
Sci Rep, 19 Sep 2024 DOI: 10.1038/s41598-024-71634-6 Link to full text
Abstract: The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
15.

Atomistic mechanisms of the regulation of small-conductance Ca2+-activated K+ channel (SK2) by PIP2.

blue CRY2/CIB1 CHO rabbit cardiomyocytes Immediate control of second messengers
Proc Natl Acad Sci U S A, 17 Sep 2024 DOI: 10.1073/pnas.2318900121 Link to full text
Abstract: Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.
16.

PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration.

blue CRY2/CIB1 iLID D. discoideum HL-60 MDA-MB-231 RAW264.7 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 15 Sep 2024 DOI: 10.1101/2024.09.15.613115 Link to full text
Abstract: Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin’s involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
17.

Selective optogenetic inhibition of Gαq or Gαi signaling by minimal RGS domains disrupts circuit functionality and circuit formation.

blue CRY2/CIB1 C. elegans in vivo D. melanogaster in vivo HEK293 rat dorsal root ganglion NSCs Signaling cascade control Neuronal activity control
Proc Natl Acad Sci U S A, 27 Aug 2024 DOI: 10.1073/pnas.2411846121 Link to full text
Abstract: Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate an optogenetic tool that disrupts Gαq signaling through membrane recruitment of a minimal regulator of G protein signaling (RGS) domain. This approach, Photo-induced Gα Modulator-Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. Using PiGM-Iq we alter the behavior of Caenorhabditis elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq changes axon guidance in cultured dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. Furthermore, by altering the minimal RGS domain, we show that this approach is amenable to Gαi signaling. Our unique and robust optogenetic Gα inhibiting approaches complement existing neurobiological tools and can be used to investigate the functional effects neuromodulators that signal through GPCR and trimeric G proteins.
18.

Programming mammalian cell behaviors by physical cues.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Biotechnol, 22 Aug 2024 DOI: 10.1016/j.tibtech.2024.07.014 Link to full text
Abstract: In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
19.

Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping.

blue AsLOV2 CRY2/CIB1 HEK293 HeLa Signaling cascade control Organelle manipulation
bioRxiv, 1 Aug 2024 DOI: 10.1101/2023.03.17.533124 Link to full text
Abstract: The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
20.

Optogenetic Strategies for Optimizing the Performance of Phospholipids Biosensors.

blue cpLOV2 CRY2/CIB1 HEK293T HeLa Organelle manipulation
Adv Sci (Weinh), 29 Jul 2024 DOI: 10.1002/advs.202403026 Link to full text
Abstract: High-performance biosensors play a crucial role in elucidating the intricate spatiotemporal regulatory roles and dynamics of membrane phospholipids. However, enhancing the sensitivity and imaging performance remains a significant challenge. Here, optogenetic-based strategies are presented to optimize phospholipid biosensors. These strategies involves presequestering unbound biosensors in the cell nucleus and regulating their cytosolic levels with blue light to minimize background signal interference in phospholipid detection, particularly under conditions of high expression levels of biosensor. Furthermore, optically controlled phase separation and the SunTag system are employed to generate punctate probes for substrate detection, thereby amplifying biosensor signals and enhancing visualization of the detection process. These improved phospholipid biosensors hold great potential for enhancing the understanding of the spatiotemporal dynamics and regulatory roles of membrane lipids in live cells and the methodological insights in this study might be valuable for developing other high-performance biosensors.
21.

Self-powered triboelectric-responsive microneedles with controllable release of optogenetically engineered extracellular vesicles for intervertebral disc degeneration repair.

blue CRY2/CIB1 HEK293T in vitro Control of vesicular transport
Nat Commun, 9 Jul 2024 DOI: 10.1038/s41467-024-50045-1 Link to full text
Abstract: Excessive exercise is an etiological factor of intervertebral disc degeneration (IVDD). Engineered extracellular vesicles (EVs) exhibit excellent therapeutic potential for disease-modifying treatments. Herein, we fabricate an exercise self-powered triboelectric-responsive microneedle (MN) assay with the sustainable release of optogenetically engineered EVs for IVDD repair. Mechanically, exercise promotes cytosolic DNA sensing-mediated inflammatory activation in senescent nucleus pulposus (NP) cells (the master cell population for IVD homeostasis maintenance), which accelerates IVDD. TREX1 serves as a crucial nuclease, and disassembly of TRAM1-TREX1 complex disrupts the subcellular localization of TREX1, triggering TREX1-dependent genomic DNA damage during NP cell senescence. Optogenetically engineered EVs deliver TRAM1 protein into senescent NP cells, which effectively reconstructs the elimination function of TREX1. Triboelectric nanogenerator (TENG) harvests mechanical energy and triggers the controllable release of engineered EVs. Notably, an optogenetically engineered EV-based targeting treatment strategy is used for the treatment of IVDD, showing promising clinical potential for the treatment of degeneration-associated disorders.
22.

Exploring plant-derived phytochrome chaperone proteins for light-switchable transcriptional regulation in mammals.

blue red CRY2/CIB1 PhyA/FHL PhyA/FHY1 HEK293T mouse in vivo Transgene expression Nucleic acid editing Multichromatic
Nat Commun, 8 Jun 2024 DOI: 10.1038/s41467-024-49254-5 Link to full text
Abstract: Synthetic biology applications require finely tuned gene expression, often mediated by synthetic transcription factors (sTFs) compatible with the human genome and transcriptional regulation mechanisms. While various DNA-binding and activation domains have been developed for different applications, advanced artificially controllable sTFs with improved regulatory capabilities are required for increasingly sophisticated applications. Here, in mammalian cells and mice, we validate the transactivator function and homo-/heterodimerization activity of the plant-derived phytochrome chaperone proteins, FHY1 and FHL. Our results demonstrate that FHY1/FHL form a photosensing transcriptional regulation complex (PTRC) through interaction with the phytochrome, ΔPhyA, that can toggle between active and inactive states through exposure to red or far-red light, respectively. Exploiting this capability, we develop a light-switchable platform that allows for orthogonal, modular, and tunable control of gene transcription, and incorporate it into a PTRC-controlled CRISPRa system (PTRCdcas) to modulate endogenous gene expression. We then integrate the PTRC with small molecule- or blue light-inducible regulatory modules to construct a variety of highly tunable systems that allow rapid and reversible control of transcriptional regulation in vitro and in vivo. Validation and deployment of these plant-derived phytochrome chaperone proteins in a PTRC platform have produced a versatile, powerful tool for advanced research and biomedical engineering applications.
23.

TORC1 reactivation by pheromone signaling revealed by phosphoproteomics of fission yeast sexual reproduction.

blue CRY2/CIB1 S. pombe Cell differentiation
bioRxiv, 6 Jun 2024 DOI: 10.1101/2024.06.04.597361 Link to full text
Abstract: Starvation, which is associated with inactivation of the growth-promoting TOR complex 1 (TORC1), is a strong environmental signal for cell differentiation. In the fission yeast Schizosaccharomyces pombe, nitrogen starvation has distinct physiological consequences depending on the presence of mating partners. In their absence, cells enter quiescence, and TORC1 inactivation prolongs their life. In presence of compatible mates, TORC1 inactivation is essential for sexual differentiation. Gametes engage in paracrine pheromone signaling, grow towards each other, fuse to form the diploid zygote, and form resistant, haploid spore progenies. To understand the signaling changes in the proteome and phospho-proteome during sexual reproduction, we developed cell synchronization strategies and present (phospho-)proteomic datasets that dissect pheromone from starvation signals over the sexual differentiation and cell-cell fusion processes. Unexpectedly, these datasets reveal phosphorylation of ribosomal protein S6 during sexual development, which we establish requires TORC1 activity. We demonstrate that TORC1 is re-activated by pheromone signaling, in a manner that does not require autophagy. Mutants with low TORC1 re-activation exhibit compromised mating and poorly viable spores. Thus, while inactivated to initiate the mating process, TORC1 is reactivated by pheromone signaling in starved cells to support sexual reproduction.
24.

AGS3-based optogenetic GDI induces GPCR-independent Gβγ signaling and macrophage migration.

blue CRY2/CIB1 HeLa RAW264.7 Signaling cascade control
bioRxiv, 5 Jun 2024 DOI: 10.1101/2024.06.04.597473 Link to full text
Abstract: G protein-coupled receptors (GPCRs) are efficient Guanine nucleotide exchange factors (GEFs) and exchange GDP to GTP on the Gα subunit of G protein heterotrimers in response to various extracellular stimuli, including neurotransmitters and light. GPCRs primarily broadcast signals through activated G proteins, GαGTP, and free Gβγ and are major disease drivers. Evidence shows that the ambient low threshold signaling required for cells is likely supplemented by signaling regulators such as non-GPCR GEFs and Guanine nucleotide Dissociation Inhibitors (GDIs). Activators of G protein Signaling 3 (AGS3) are recognized as a GDI involved in multiple health and disease-related processes. Nevertheless, understanding of AGS3 is limited, and no significant information is available on its structure-function relationship or signaling regulation in living cells. Here, we employed in silico structure-guided engineering of a novel optogenetic GDI, based on the AGS3’s G protein regulatory (GPR) motif, to understand its GDI activity and induce standalone Gβγ signaling in living cells on optical command. Our results demonstrate that plasma membrane recruitment of OptoGDI efficiently releases Gβγ, and its subcellular targeting generated localized PIP3 and triggered macrophage migration. Therefore, we propose OptoGDI as a powerful tool for optically dissecting GDI-mediated signaling pathways and triggering GPCR-independent Gβγ signaling in cells and in vivo.
25.

Optogenetic therapeutic strategies for diabetes mellitus.

blue cyan green red BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
J Diabetes, Jun 2024 DOI: 10.1111/1753-0407.13557 Link to full text
Abstract: Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.
Submit a new publication to our database