Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: switch:"CRY2/CIB1"
Showing 1 - 25 of 553 results
1.

Technological advances in visualizing and rewiring microtubules during plant development.

blue green red Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
J Exp Bot, 16 Dec 2025 DOI: 10.1093/jxb/eraf284 Link to full text
Abstract: Microtubules are crucial regulators of plant development and are organized by a suite of microtubule-associated proteins (MAPs) that can rapidly remodel the array in response to various cues. This complexity has inspired countless studies into microtubule function from the subcellular to tissue scale, revealing an ever-increasing number of microtubule-dependent processes. Developing a comprehensive understanding of how local microtubule configuration, dynamicity, and remodeling drive developmental progression requires new approaches to capture and alter microtubule behavior. In this review, we will introduce the technological advancements we believe are poised to transform the study of microtubules in plant cells. In particular, we focus on (1) advanced imaging and analysis methods to quantify microtubule organization and behavior, and (2) novel tools to target specific microtubule populations in vivo. By showcasing innovative methodologies developed in non-plant systems, we hope to motivate their increased adoption and raise awareness of possible means of adapting them for studying microtubules in plants.
2.

Optogenetic tools for optimizing key signalling nodes in synthetic biology.

blue green near-infrared red BLUF domains Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Biotechnol Adv, 27 Nov 2025 DOI: 10.1016/j.biotechadv.2025.108770 Link to full text
Abstract: The modification of key enzymes for chemical production plays a crucial role in enhancing the yield of targeted products. However, manipulating key nodes in specific signalling pathways remains constrained by traditional gene overexpression or knockout strategies. Discovering and designing optogenetic tools enable us to regulate enzymatic activity or gene expression at key nodes in a spatiotemporal manner, rather than relying solely on chemical induction throughout production processes. In this review, we discuss the recent applications of optogenetic tools in the regulation of microbial metabolites, plant sciences and disease therapies. We categorize optogenetic tools into five classes based on their distinct applications. First, light-induced gene expression schedules can balance the trade-off between chemical production and cell growth phases. Second, light-triggered liquid-liquid phase separation (LLPS) modules provide opportunities to co-localize and condense key enzymes for enhancing catalytic efficiency. Third, light-induced subcellular localized photoreceptors enable the relocation of protein of interest across various subcellular compartments, allowing for the investigation of their dynamic regulatory processes. Fourth, light-regulated enzymes can dynamically regulate production of cyclic nucleotides or investigate endogenous components similar with conditional depletion or recovery function of protein of interest. Fifth, light-gated ion channels and pumps can be utilized to investigate dynamic ion signalling cascades in both animals and plants, or to boost ATP accumulation for enhancing biomass or bioproduct yields in microorganisms. Overall, this review aims to provide a comprehensive overview of optogenetic strategies that have the potential to advance both basic research and bioindustry within the field of synthetic biology.
3.

Mechanisms and applications of epigenome editing in plants: current status, challenges and future perspectives.

blue Cryptochromes LOV domains Review
Funct Integr Genomics, 17 Nov 2025 DOI: 10.1007/s10142-025-01762-3 Link to full text
Abstract: Epigenome editing has become a leading-edge technology of programmable, heritable and reversible control of gene expression in plants without changing the DNA sequence. CRISPR/dCas9 systems along with transcription activator-like effectors (TALEs) and zinc finger systems have made it possible to manipulate DNA methylation, histone modifications, and RNA epigenetic marks in a precise and locus-specific fashion. These tools have been used on major regulatory genes of flowering time, stress adjustment, and yield maximization in model and crop plants. This review synthesizes the current status of plant epigenome editing advances and highlights mechanistic innovations including SunTag, CRISPRoff/on and RNA m6A editing. It also emphasizes new paradigm shifts in chromatin reprogramming, including transcription-resistive chromatin states, locus-specific H3K27me3 demethylation, and nanobody-mediated chromatin targeting. Furthermore, it considers the consequences of these shifts in the context of trait stability and epigenetic inheritance. Moreover, the relative evaluation of dCas9-, TALE-, and ZFP-based platforms indicated that there are still enduring problems in the performance of delivery, off-target effects, and transgenerational stability. The review concludes with a conceptual framework connecting epigenome editing to climate-smart crop improvement and outlines future research priorities focused on combinatorial multi-omics integration and the development of environmentally responsive editing platforms.
4.

Capitalizing on mechanistic insights to power design of future-ready intracellular optogenetics tools.

blue cyan green near-infrared red BLUF domains CarH Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Biotechnol Adv, 17 Nov 2025 DOI: 10.1016/j.biotechadv.2025.108761 Link to full text
Abstract: Intracellular optogenetics represents a rapidly advancing biotechnology that enables precise, reversible control of protein activity, signaling dynamics, and cellular behaviours using genetically encoded, light-responsive systems. Originally pioneered in neuroscience through channelrhodopsins to manipulate neuronal excitability, the field has since expanded into diverse intracellular applications with broad implications for medicine, agriculture, and biomanufacturing. Key to these advances are photoreceptors such as cryptochrome 2 (CRY2), light-oxygen-voltage (LOV) domains, and phytochromes, which undergo conformational changes upon illumination to trigger conditional protein-protein interactions, localization shifts, or phase transitions. Recent engineering breakthroughs-including the creation of red-light responsive systems such as MagRed that exploit endogenous biliverdin-have enhanced tissue penetration, minimized phototoxicity, and expanded applicability to complex biological systems. This review provides an overarching synthesis of the molecular principles underlying intracellular optogenetic actuators, including the photophysical basis of light-induced conformational changes, oligomerization, and signaling control. We highlight strategies that employ domain fusions, rational mutagenesis, and synthetic circuits to extend their utility across biological and industrial contexts. We also critically assess current limitations, such as chromophore dependence, light delivery challenges, and safety considerations, so as to frame realistic paths towards translation. Looking ahead, future opportunities include multi-colour and multiplexed systems, integration with high-throughput omics and artificial intelligence, and development of non-invasive modalities suited for in vivo and industrial applications. Intracellular optogenetics is thus emerging as a versatile platform technology, with the potential to reshape how we interrogate biology and engineer cells for therapeutic, agricultural, and environmental solutions.
5.

OptoLoop: An optogenetic tool to probe the functional role of genome organization.

blue CRY2/CIB1 CRY2/CRY2 CRY2high CRY2olig HeLa NIH/3T3 U-2 OS Organelle manipulation Nucleic acid editing Benchmarking
bioRxiv, 8 Nov 2025 DOI: 10.1101/2025.11.06.686574 Link to full text
Abstract: The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the regulation of gene expression remains only partially understood. The structure-function relationship of genomes has traditionally been probed by population-wide measurements after mutation of critical DNA elements or by perturbation of chromatin-associated proteins. To circumvent possible pleiotropic effects of such approaches, we have developed OptoLoop, an optogenetic system that allows direct manipulation of chromatin contacts by light in a controlled fashion. OptoLoop is based on the fusion between a nuclease-dead SpCas9 protein and the light-inducible oligomerizing protein CRY2. We demonstrate that OptoLoop can drive the induction of contacts between genomically distant, repetitive DNA loci. As a proof-of-principle application of OptoLoop, we probed the functional role of DNA looping in the regulation of the human telomerase gene TERT by long-range contacts with the telomere. By analyzing the extent of chromatin looping and nascent RNA production at individual alleles, we find evidence for looping-mediated repression of TERT. In sum, OptoLoop represents a novel means for the interrogation of structure-function relationships in the genome at single-allele resolution.
6.

Rapid Optimization of a Light-Inducible System to Control Mammalian Gene Expression.

blue CRY2/CIB1 HEK293T
J Vis Exp, 4 Nov 2025 DOI: 10.3791/68779 Link to full text
Abstract: Inducible gene expression tools can open novel applications in human health and biotechnology, but current options are often expensive, difficult to reverse, and have undesirable off-target effects. Optogenetic systems use light-responsive proteins to control the activity of regulators such that expression is controlled with the "flip of a switch". This study optimizes a simplified light activated CRISPR effector (2pLACE) system, which provides tunable, reversible, and precise control of mammalian gene expression. The OptoPlate-96 enables high-throughput screening via flow cytometry for single-cell analysis and rapid optimization of 2pLACE. This study demonstrates how to use the 2pLACE system with the OptoPlate-96 in HEK293T cells to identify the optimal component ratios for maximizing dynamic range and to find the blue light intensity response curve. Similar workflows can be developed for other mammalian cells and for other optogenetic systems and wavelengths of light. These advancements enhance the precision, scalability, and adaptability of optogenetic tools for biomanufacturing applications.
7.

A single-component optogenetic toolkit for programmable control of microtubule.

blue AsLOV2 CRY2/CIB1 CRY2/CRY2 C. elegans in vivo HeLa Signaling cascade control Control of cytoskeleton / cell motility / cell shape Organelle manipulation
bioRxiv, 3 Nov 2025 DOI: 10.1101/2025.10.31.685931 Link to full text
Abstract: Microtubules (MTs) form dynamic cytoskeletal scaffolds essential for intracellular transport, organelle positioning, and spatial organization of signaling. Their architecture and function are continuously remodeled through the concerted actions of microtubule-associated proteins (MAPs), post-translational modifications (PTMs), and molecular motors. To precisely interrogate these processes in living systems, we developed a genetically encoded optogenetic toolkit for spatiotemporal control of MT organization and dynamics. By replacing native multimerization motifs with a blue light-responsive oligoermization domain, we have engineered single-component probes, OptoMT and OptoTIP, that reversibly label MT polymers or track plus-ends with tunable kinetics from seconds to minutes. When coupled to enzymatic effectors, these modules enable localized tubulin acetylation or detyrosination, directly linking PTMs to MT stability. We further engineered OptoMotor, a light-activatable kinesin platform that reconstitutes tail-dependent cargo transport along MTs, and OptoSAW, a light-triggered severing actuator for controlled MT disassembly. Using these tools, we reveal how local MT integrity governs lysosomal trafficking and ER-associated signaling dynamics. Collectively, this versatile single-component toolkit bridges molecular design with cytoskeletal function, offering new avenues to illuminate how dynamic cytoskeletal architectures coordinate intracellular organization, transport, and signaling.
8.

Why epithelial cells collectively move against a traveling signal wave.

blue CRY2/CIB1 MDCK Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Soft Matter, 15 Oct 2025 DOI: 10.1039/d5sm00403a Link to full text
Abstract: The response of cell populations to external stimuli plays a central role in biological mechanical processes such as epithelial wound healing and developmental morphogenesis. Wave-like propagation of a signal of ERK MAP kinase has been shown to direct collective migration in one direction; however, the mechanism based on continuum mechanics under a traveling wave is not fully understood. To elucidate how the traveling wave of the ERK kinase signal directs collective migration, we constructed the mechanical model of the epithelial cell monolayer by considering the signal-dependent coordination of contractile stress and cellular orientation. The proposed model was studied by using an optogenetically controlled cell system where we found that local signal activation induces changes in cell density and orientation with the direction of propagation. The net motion of the cell population occurred relative to the wave, and the migration velocity showed a maximum in resonance with the velocity of the ERK signal wave. The presented mechanical model was further validated in an in vitro wound healing process.
9.

Modeling mechanochemical coupling in optogenetically activated cell layers.

blue CRY2/CIB1 in silico Control of cell-cell / cell-material interactions
Biophys J, 9 Oct 2025 DOI: 10.1016/j.bpj.2025.10.002 Link to full text
Abstract: In adherent cells, actomyosin contractility is regulated mainly by the RhoA signaling pathway, which can be controlled by optogenetics. To model the mechanochemical coupling in such systems, we introduce a finite element framework based on the discontinuous Galerkin method, which allows us to treat cell doublets, chains of cells, and monolayers within the same conceptual framework. While the adherent cell layer is modeled as an actively contracting viscoelastic solid on an elastic foundation, different models are considered for the Rho pathway, starting with a simple linear chain that can be solved analytically and later including direct feedback that can be solved only numerically. Our model predicts signal propagation as a function of coupling strength and viscoelastic timescales and identifies the conditions for optimal cell responses and wave propagation. In general, it provides a systematic understanding of how biochemistry and mechanics simultaneously contribute to the communication of adherent cells.
10.

Optogenetic control of T cells for immunomodulation.

blue red Cryptochromes LOV domains Phytochromes Review
Essays Biochem, 8 Sep 2025 DOI: 10.1042/ebc20253014 Link to full text
Abstract: Cellular immunotherapy has transformed cancer treatment by harnessing T cells to target malignant cells. However, its broader adoption is hindered by challenges such as efficacy loss, limited persistence, tumor heterogeneity, an immunosuppressive tumor microenvironment (TME), and safety concerns related to systemic adverse effects. Optogenetics, a technology that uses light-sensitive proteins to regulate cellular functions with high spatial and temporal accuracy, offers a potential solution to overcome these issues. By enabling targeted modulation of T cell receptor signaling, ion channels, transcriptional programming, and antigen recognition, optogenetics provides dynamic control over T cell activation, cytokine production, and cytotoxic responses. Moreover, optogenetic strategies can be applied to remodel the TME by selectively activating immune responses or inducing targeted immune cell depletion, thereby enhancing T cell infiltration and immune surveillance. However, practical hurdles such as limited tissue penetration of visible light and the need for cell- or tissue-specific gene delivery must be addressed for clinical translation. Emerging solutions, including upconversion nanoparticles, are being explored to improve light delivery to deeper tissues. Future integration of optogenetics with existing immunotherapies, such as checkpoint blockade and adoptive T cell therapies, could improve treatment specificity, minimize adverse effects, and provide real-time control over immune responses. By refining the precision and adaptability of immunotherapy, optogenetics promises to further enhance both the safety and efficacy of cancer immunotherapy.
11.

Two Decades of Optogenetic Tools: A Retrospective and a Look Ahead.

blue green red BLUF domains Cobalamin-binding domains Cryptochromes Dronpa LOV domains OCP2 Phytochromes Review
Adv Genet (Hoboken), 2 Sep 2025 DOI: 10.1002/ggn2.202500021 Link to full text
Abstract: Over the past two decades, optogenetics has evolved from a conceptual framework into a powerful and versatile technology for controlling cellular processes with light. Rooted in the discovery and characterization of natural photoreceptors, the field has advanced through the development of genetically encoded, light-sensitive proteins that enable precise spatiotemporal control of ion flux, intracellular signaling, gene expression, and protein interactions. This review traces key milestones in the emergence of optogenetics and highlights the development of major optogenetic tools. From the perspective of genetic tool innovation, the focus is on how these tools have been engineered and optimized for novel or enhanced functions, altered spectral properties, improved light sensitivity, subcellular targeting, and beyond. Their broadening applications are also explored across neuroscience, cardiovascular biology, hematology, plant sciences, and other emerging fields. In addition, current trends such as all-optical approaches, multiplexed control, and clinical translation, particularly in vision restoration are discussed. Finally, ongoing challenges are addressed and outline future directions in optogenetic tool development and in vivo applications, positioning optogenetics as a transformative platform for basic research and therapeutic advancement.
12.

Endogenous OptoRhoGEFs reveal biophysical principles of epithelial tissue furrowing.

blue CRY2/CIB1 iLID D. melanogaster in vivo Signaling cascade control Developmental processes
Nat Commun, 18 Aug 2025 DOI: 10.1038/s41467-025-62483-6 Link to full text
Abstract: During development, epithelia function as malleable sheets that undergo extensive remodeling to shape developing embryos. Optogenetic control of Rho signaling provides an avenue to investigate mechanisms of epithelial morphogenesis, but transgenic optogenetic tools can be limited by variability in expression levels and deleterious effects of transgenic overexpression on development. Here, we use CRISPR/Cas9 to tag Drosophila RhoGEF2 and Cysts/Dp114RhoGEF with components of the iLID/SspB optogenetic heterodimer, permitting light-dependent control over endogenous protein activities. Using quantitative optogenetic perturbations, we uncover a dose-dependence of tissue furrow depth and bending behavior on RhoGEF recruitment, revealing mechanisms by which developing embryos can shape tissues into particular morphologies. We show that at the onset of gastrulation, furrows formed by cell lateral contraction are oriented and size-constrained by basal actomyosin. Our findings demonstrate the use of quantitative, 3D-patterned perturbations of cell contractility to precisely shape tissue structures and interrogate developmental mechanics.
13.

Multimodal Key Anti-Oncolytic Therapeutics Are Effective In Cancer Treatment?

blue cyan near-infrared red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Int J Nanomedicine, 16 Aug 2025 DOI: 10.2147/ijn.s531849 Link to full text
Abstract: Oncolytic virus (OVs) therapy has emerged as a promising modality in cancer immunotherapy, attracting growing attention for its multifaceted mechanisms of tumor elimination. However, its efficacy as a monotherapy remains constrained by physiological barriers, limited delivery routes, and suboptimal immune activation. Phototherapy, an innovative and rapidly advancing cancer treatment technology, can mitigate these limitations when used in conjunction with OVs, enhancing viral delivery, amplifying tumor destruction, and boosting antitumor immune responses. This review provides the first comprehensive analysis of synergistic integration of OVs with both photodynamic therapy (PDT) and photothermal therapy (PTT). It also explores their applications in optical imaging-guided diagnosis and optogenetically controlled delivery. Furthermore, it discusses emerging strategies involving biomimetic virus or viroid-based vectors in conjunction with phototherapy, and delves into the immunomodulatory mechanisms of this combinatorial approach. While promising in preclinical models, these combined strategies are still largely in early-stage research. Challenges such as limited light penetration, delivery efficiency, and safety concerns remain to be addressed for clinical translation. Consequently, the integration of OV therapy and phototherapy represents a compelling strategy in cancer treatment, offering significant promise for advancing precision oncology and next-generation immunotherapies.
14.

Optogenetic enzymes: A deep dive into design and impact.

blue cyan near-infrared red BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Struct Biol, 5 Aug 2025 DOI: 10.1016/j.sbi.2025.103126 Link to full text
Abstract: Optogenetically regulated enzymes offer unprecedented spatiotemporal control over protein activity, intermolecular interactions, and intracellular signaling. Many design strategies have been developed for their fabrication based on the principles of intrinsic allostery, oligomerization or 'split' status, intracellular compartmentalization, and steric hindrance. In addition to employing photosensory domains as part of the traditional optogenetic toolset, the specificity of effector domains has also been leveraged for endogenous applications. Here, we discuss the dynamics of light activation while providing a bird's eye view of the crafting approaches, targets, and impact of optogenetic enzymes in orchestrating cellular functions, as well as the bottlenecks and an outlook into the future.
15.

Chemogenetic and optogenetic strategies for spatiotemporal control of split-enzyme-based calcium recording.

blue AsLOV2 CRY2/CIB1 HEK293 HEK293T Signaling cascade control
bioRxiv, 26 Jul 2025 DOI: 10.1101/2025.07.22.665990 Link to full text
Abstract: Methods for monitoring physiological changes in cellular Ca2+ levels have been in high demand for their utility in monitoring neuronal signaling. Recently, we introduced SCANR (Split-Tobacco Etch Virus (TEV) protease Calcium-regulated Neuron Recorder), which reports on Ca2+ changes in cells through the binding of calmodulin and M13 to reconstitute an active TEV protease. First-generation SCANR marked all of the Ca2+ spikes that occur throughout the lifetime of the cell, but it did not have a mechanism for controlling the time window in which recording of physiological changes in Ca2+ occurred. Here, we explore both chemical and light-based strategies for controlling the time and place in which Ca2+ recording occurs. We describe the adaptation of six popular chemo- and opto-genetics methods for controlling protein activity and subcellular localization to the SCANR system. We report two successful strategies, one that leverages the LOV-Jα optogenetics system for sterically controlling protein interactions and another that employs chemogenetic manipulation of subcellular protein distribution using the FKBP/FRB rapamycin binding pair.
16.

Opto-p53: A light-controllable activation of p53 signaling pathway.

blue CRY2/CIB1 HCT116 Signaling cascade control Cell cycle control Cell death
Cell Struct Funct, 1 Jul 2025 DOI: 10.1247/csf.25017 Link to full text
Abstract: p53 protein, a crucial transcription factor in cellular responses to a wide variety of stress, regulates multiple target genes involved in tumor suppression, senescence induction, and metabolic functions. To characterize the context-dependent roles of p53, it is still needed to develop an experimental system that enables selective activation of p53 in cells and tissues. In this study, we developed an optogenetic tool, Opto-p53, to control p53 signaling by light. Opto-p53 was designed to trigger p53 signaling by reconstituting p53 N-terminal and C-terminal fragments with a light-inducible dimerization (LID) system. Upon light exposure, cells expressing Opto-p53 demonstrated p53 transcriptional activation, resulting in cell death and cell cycle arrest. We further enhanced the efficacy of light-induced p53 activation by introducing specific mutations into Opto-p53 fragments. Our findings unveil the capability of Opto-p53 to serve as a powerful tool for dissecting the complex roles of p53 in cellular processes, thereby contributing to the field of synthetic biology and providing general design principles for optogenetic tools using endogenous transcription factors.Key words: synthetic biology, transcriptional factor, p53, optogenetics.
17.

A simplified two-plasmid system for orthogonal control of mammalian gene expression using light-activated CRISPR effector.

blue CRY2/CIB1 C2C12 HEK293T Transgene expression
BMC Biotechnol, 1 Jul 2025 DOI: 10.1186/s12896-025-00994-2 Link to full text
Abstract: Optogenetic systems use light-responsive proteins to control gene expression, ion channels, protein localization, and signaling with the "flip of a switch". One such tool is the light activated CRISPR effector (LACE) system. Its ability to regulate gene expression in a tunable, reversible, and spatially resolved manner makes it attractive for many applications. However, LACE relies on delivery of four separate components on individual plasmids, which can limit its use. Here, we optimize LACE to reduce the number of plasmids needed to deliver all four components.
18.

Programmable genome engineering and gene modifications for plant biodesign.

blue red Cryptochromes LOV domains Phytochromes Review
Plant Commun, 24 Jun 2025 DOI: 10.1016/j.xplc.2025.101427 Link to full text
Abstract: Plant science has entered a transformative era as genome editing enables precise DNA modifications to address global challenges such as climate adaptation and food security. These modifications are primarily driven by the integration of three modular components-DNA-targeting modules, effector modules, and control modules-that can be selectively activated or suppressed. The field has evolved from protein-based systems (e.g., zinc finger nucleases and transcription activator-like effector nucleases) to RNA-guided systems (e.g., CRISPR-Cas) that can control both genetic and epigenetic states. Modular pairing of DNA-targeting and effector domains, with or without inducible control, enables precise transcriptional regulation and chromatin remodeling. The present review examines these three modules and highlights strategies for their optimization. It also outlines innovative tools, such as optogenetic and receptor-integrated systems, that enable spatiotemporal control over genome editor expression. These modular approaches bypass traditional limitations and allow scientists to create plants with desirable traits, decipher complex gene networks, and promote sustainable agriculture.
19.

Optogenetics to biomolecular phase separation in neurodegenerative diseases.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Mol Cells, 22 Jun 2025 DOI: 10.1016/j.mocell.2025.100247 Link to full text
Abstract: Neurodegenerative diseases involve toxic protein aggregation. Recent evidence suggests that biomolecular phase separation, a process in which proteins and nucleic acids form dynamic, liquid-like condensates, plays a key role in this aggregation. Optogenetics, originally developed to control neuronal activity with light, has emerged as a powerful tool to investigate phase separation in living systems. This is achieved by fusing disease-associated proteins to light-sensitive oligomerization domains, enabling researchers to induce or reverse condensate formation with precise spatial and temporal control. This review highlights how optogenetic systems such as OptoDroplet are being used to dissect the mechanisms of neurodegenerative disease. We examine how these tools have been applied in models of neurodegenerative diseases, such as amyotrophic lateral sclerosis, Alzheimer's, Parkinson's, and Huntington's disease. These studies implicate small oligomeric aggregates as key drivers of toxicity and highlight new opportunities for therapeutic screening. Finally, we discuss advances in light-controlled dissolution of condensates and future directions for applying optogenetics to combat neurodegeneration. By enabling precise, dynamic control of protein phase behavior in living systems, optogenetic approaches provide a powerful framework for elucidating disease mechanisms and informing the development of targeted therapies.
20.

Optogenetic perturbation of lipid droplet localization affects lipid metabolism and development in Drosophila.

blue CRY2/CIB1 CRY2clust Cos-7 D. melanogaster in vivo L-02 Organelle manipulation
J Lipid Res, 20 Jun 2025 DOI: 10.1016/j.jlr.2025.100848 Link to full text
Abstract: Lipid droplets (LDs) are dynamic organelles crucial for lipid storage and homeostasis. Despite extensive documentation of their importance, the causal relationship between LD localization and function in health and disease remains inadequately understood. Here, we developed optogenetics-based tools, termed "Opto-LDs," which facilitate the interaction between LDs and motor proteins in a light-dependent manner, enabling precise control of LD localization within cells. Utilizing these optogenetic modules, we demonstrated that light-induced relocation of LDs to the periphery of hepatocytes results in elevated very-low-density lipoprotein (VLDL) secretion, recapturing the beneficial effect of insulin in vitro. Furthermore, our studies in transgenic Drosophila revealed that proper LD localization is critical for embryonic development, with mistargeting of LDs significantly affecting egg hatching success. In summary, our work underscores the great importance of LD localization in lipid metabolism and development, and our developed tools offer valuable insights into the functions of LDs in health and disease.
21.

An Optical Approach to Modulating Membrane Protein Endocytosis Using a Light-Responsive Tag for Recruiting β-Arrestin.

blue CRY2/CIB1 HEK293 Signaling cascade control Control of intracellular / vesicular transport
ACS Chem Biol, 17 Jun 2025 DOI: 10.1021/acschembio.5c00096 Link to full text
Abstract: Membrane receptors, particularly G protein-coupled receptors (GPCRs), are integral to numerous physiological processes. Precise control of the receptor endocytosis is essential for understanding cellular signaling pathways. In this study, we present the development of a broadly applicable optogenetic tool for light-inducible receptor internalization. This system, named E-fragment, leverages the CRY2-CIB photodimerization pair to enable blue-light-dependent recruitment of β-arrestin and subsequent receptor internalization. We showed that the E-fragment system is applicable across diverse membrane proteins, including multiple GPCRs. Furthermore, we investigated its impact on intracellular cAMP signaling in cells expressing dopamine receptor D1 and α2-adrenergic receptor. Quantitative analyses revealed that light-induced internalization led to reduced surface receptor expression and attenuated ligand-evoked cAMP responses. These findings demonstrate the versatility of the E-fragment system as a platform for studying membrane receptor function and suggest potential applications in therapeutic strategies targeting receptor trafficking and signaling modulation.
22.

Constitutively active Arabidopsis cryptochrome 2 alleles identified using yeast selection and deep mutational scanning.

blue Cryptochromes Background
J Biol Chem, 21 May 2025 DOI: 10.1016/j.jbc.2025.110265 Link to full text
Abstract: The Arabidopsis blue light photoreceptor cryptochrome 2 (CRY2) responds to blue light to initiate a variety of plant light-based behaviors and has been widely used for optogenetic engineering. Despite these important biological functions, the precise photoactivation mechanism of CRY2 remains incompletely understood. In light, CRY2 undergoes tetramerization and binds to partner proteins, including the transcription factor CIB1. Here we used yeast-two hybrid screening and deep mutational scanning to identify CRY2 amino acid changes that result in constitutive interaction with CIB1 in dark. The majority of CRY2 variants show constitutive CIB1 interaction mapped to two regions, one near the FAD chromophore and a second region located near the ATP binding site. Further testing of CRY2 variants from each region revealed three mapping near to the FAD binding pocket (D393S, D393A, and M378R) that also form constitutive CRY2-CRY2 homomers in dark, suggesting they adopt global conformational changes that mimic the photoactive state. Characterization of D393S in the homolog pCRY from Chlamydomonas reinhardtii using time-resolved UV-vis spectroscopy revealed that the FAD chromophore fails to form the neutral radical as signaling state upon illumination. Size exclusion chromatography of D393S shows the presence of homomers instead of a monomer in the dark, providing support for a hyperactive variant decoupled from the FAD. Our work provides new insight into photoactivation mechanisms of plant cryptochromes relevant for physiology and optogenetic application by revealing and localizing distinct activation pathways for light-driven CRY2-CIB1 and CRY2-CRY2 interactions.
23.

Engineering plant photoreceptors towards enhancing plant productivity.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review
Plant Mol Biol, 6 May 2025 DOI: 10.1007/s11103-025-01591-9 Link to full text
Abstract: Light is a critical environmental factor that governs the growth and development of plants. Plants have specialised photoreceptor proteins, which allow them to sense both quality and quantity of light and drive a wide range of responses critical for optimising growth, resource use and adaptation to changes in environment. Understanding the role of these photoreceptors in plant biology has opened up potential avenues for engineering crops with enhanced productivity by engineering photoreceptor activity and/or action. The ability to manipulate plant genomes through genetic engineering and synthetic biology approaches offers the potential to unlock new agricultural innovations by fine-tuning photoreceptors or photoreceptor pathways that control plant traits of agronomic significance. Additionally, optogenetic tools which allow for precise, light-triggered control of plant responses are emerging as powerful technologies for real-time manipulation of plant cellular responses. As these technologies continue to develop, the integration of photoreceptor engineering and optogenetics into crop breeding programs could potentially revolutionise how plant researchers tackle challenges of plant productivity. Here we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement. This review seeks to highlight both opportunities and challenges in harnessing photoreceptor engineering approaches for enhancing plant productivity. In this review, we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement.
24.

Red Light-Activated Reversible Inhibition of Protein Functions by Assembled Trap.

blue red CRY2/CIB1 DrBphP HeLa ovarian somatic cells Cell cycle control Organelle manipulation
ACS Synth Biol, 30 Apr 2025 DOI: 10.1021/acssynbio.4c00585 Link to full text
Abstract: Red light, characterized by superior tissue penetration and minimal phototoxicity, represents an ideal wavelength for optogenetic applications. However, the existing tools for reversible protein inhibition by red light remain limited. Here, we introduce R-LARIAT (red light-activated reversible inhibition by assembled trap), a novel optogenetic system enabling precise spatiotemporal control of protein function via 660 nm red-light-induced protein clustering. Our system harnesses the rapid and reversible binding of engineered light-dependent binders (LDBs) to the bacterial phytochrome DrBphP, which utilizes the endogenous mammalian biliverdin chromophore for red light absorption. By fusing LDBs with single-domain antibodies targeting epitope-tagged proteins (e.g., GFP), R-LARIAT enables the rapid sequestration of diverse proteins into light-responsive clusters. This approach demonstrates high light sensitivity, clustering efficiency, and sustained stability. As a proof of concept, R-LARIAT-mediated sequestration of tubulin inhibits cell cycle progression in HeLa cells. This system expands the optogenetic toolbox for studying dynamic biological processes with high spatial and temporal resolution and holds the potential for applications in living tissues.
25.

Empowering bacteria with light: Optogenetically engineered bacteria for light-controlled disease theranostics and regulation.

blue green near-infrared red BLUF domains Cryptochromes LOV domains Phytochromes Review
J Control Release, 29 Apr 2025 DOI: 10.1016/j.jconrel.2025.113787 Link to full text
Abstract: Bacterial therapy has emerged as a promising approach for disease treatment due to its environmental sensitivity, immunogenicity, and modifiability. However, the clinical application of engineered bacteria is limited by differences of expression levels in patients and possible off-targeting. Optogenetics, which combines optics and genetics, offers key advantages such as remote controllability, non-invasiveness, and precise spatiotemporal control. By utilizing optogenetic tools, the behavior of engineered bacteria can be finely regulated, enabling on-demand control of the dosage and location of their therapeutic products. In this review, we highlight the latest advancements in the optogenetic engineering of bacteria for light-controlled disease theranostics and therapeutic regulation. By constructing a three-dimensional analytical framework of “sense-produce-apply”, we begin by discussing the key components of bacterial optogenetic systems, categorizing them based on their photosensitive protein response to blue, green, and red light. Next, we introduce innovative light-producing tools that extend beyond traditional light sources. Then, special emphasis is placed on the biomedical applications of optogenetically engineered bacteria in treating diseases such as cancer, intestinal inflammation and systemic disease regulation. Finally, we address the challenges and future prospects of bacterial optogenetics, outlining potential directions for enhancing the safety and efficacy of light-controlled bacterial therapies. This review aims to provide insights and strategies for researchers working to advance the application of optogenetically engineered bacteria in drug delivery, precision medicine and therapeutic regulation.
Submit a new publication to our database