Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 115 results
1.

Atomistic mechanisms of the regulation of small-conductance Ca2+-activated K+ channel (SK2) by PIP2.

blue CRY2/CIB1 CHO rabbit cardiomyocytes Immediate control of second messengers
Proc Natl Acad Sci U S A, 17 Sep 2024 DOI: 10.1073/pnas.2318900121 Link to full text
Abstract: Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.
2.

An Integrated Optogenetic and Bioelectronic Platform for Regulating Cardiomyocyte Function.

blue bPAC (BlaC) rat cardiomyocytes Immediate control of second messengers
Adv Sci (Weinh), 25 Jul 2024 DOI: 10.1002/advs.202402236 Link to full text
Abstract: Bioelectronic medicine is emerging as a powerful approach for restoring lost endogenous functions and addressing life-altering maladies such as cardiac disorders. Systems that incorporate both modulation of cellular function and recording capabilities can enhance the utility of these approaches and their customization to the needs of each patient. Here is report an integrated optogenetic and bioelectronic platform for stable and long-term stimulation and monitoring of cardiomyocyte function in vitro. Optical inputs are achieved through the expression of a photoactivatable adenylyl cyclase, that when irradiated with blue light causes a dose-dependent and time-limited increase in the secondary messenger cyclic adenosine monophosphate with subsequent rise in autonomous cardiomyocyte beating rate. Bioelectronic readouts are obtained through a multi-electrode array that measures real-time electrophysiological responses at 32 spatially-distinct locations. Irradiation at 27 µW mm-2 results in a 14% elevation of the beating rate within 20-25 min, which remains stable for at least 2 h. The beating rate can be cycled through "on" and "off" light states, and its magnitude is a monotonic function of irradiation intensity. The integrated platform can be extended to stretchable and flexible substrates, and can open new avenues in bioelectronic medicine, including closed-loop systems for cardiac regulation and intervention, for example, in the context of arrythmias.
3.

Spatial ciliary signaling regulates the dorsal/ventral regionalization of human brain organoids.

blue bPAC (BlaC) human IPSCs Immediate control of second messengers Neuronal activity control
bioRxiv, 20 Jul 2024 DOI: 10.1101/2024.07.18.604098 Link to full text
Abstract: Regionalization of the brain is a fundamental question in human developmental biology. Primary cilia are known for a critical organelle for dorsal/ventral fate of brain formation in mice, but little is known about how signaling in the primary cilia regulate regionalization of the human brain. Here, we found that signaling in the primary cilia function in regionalization of the brain using brain organoids derived from human induced pluripotent stem (iPS) cells. Deletion of a ciliary GTPase, ARL13B, induced partially ventralized neural stem cells in the dorsal cortical organoids, despite using a guided dorsal cortical organoid differentiation protocol. Mechanistically, ARL13B knockout (KO) neural stem cells decreased ciliary localization of GPR161, a negative regulator of SHH signaling in primary cilia and increased SONIC HEDGEHOG (SHH) signaling. GPR161 deletion also induced ventralized neural stem cells in the dorsal cortical organoids, despite using the guided differentiation protocol. GPR161 deletion increased SHH signaling mediated by decreased GLI3 repressor formation. Pharmacological treatment to increase cAMP levels rescued GLI3 repressor formation and the differentiation of dorsal neural stem cells in GPR161 KO brain organoids. Importantly, elevating the amount of ciliary cAMP by optogenetics restored the generation of dorsal neural stem cells in GPR161 KO brain organoids. These data indicate that spatial ciliary signaling, the ARL13B-GPR161-cAMP axis in primary cilia, is a fundamental regulator of the dorsal/ventral regionalization of the human brain.
4.

The caloric value of food intake structurally adjusts a neuronal mushroom body circuit mediating olfactory learning in Drosophila.

blue bPAC (BlaC) D. melanogaster in vivo Immediate control of second messengers Neuronal activity control
Learn Mem, 11 Jun 2024 DOI: 10.1101/lm.053997.124 Link to full text
Abstract: Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.
5.

Optogenetic inhibition of light-captured alcohol-taking striatal engrams facilitates extinction and suppresses reinstatement.

blue AsLOV2 mouse in vivo rat in vivo Transgene expression Immediate control of second messengers
bioRxiv, 2 Jun 2024 DOI: 10.1101/2024.06.02.597021 Link to full text
Abstract: Alcohol use disorder (AUD) is a complex condition, and it remains unclear which specific neuronal substrates mediate alcohol-seeking and -taking behaviors. Engram cells and their related ensembles, which encode learning and memory, may play a role in this process. We aimed to assess the precise neural substrates underlying alcohol-seeking and -taking behaviors and determine how they may affect one another.
6.

Optogenetic induction of chronic glucocorticoid exposure in early-life leads to blunted stress-response in larval zebrafish.

blue bPAC (BlaC) zebrafish in vivo Immediate control of second messengers
Eur J Neurosci, 11 Apr 2024 DOI: 10.1111/ejn.16301 Link to full text
Abstract: Early life stress (ELS) exposure alters stress susceptibility in later life and affects vulnerability to stress-related disorders, but how ELS changes the long-lasting responsiveness of the stress system is not well understood. Zebrafish provides an opportunity to study conserved mechanisms underlying the development and function of the stress response that is regulated largely by the neuroendocrine hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis, with glucocorticoids (GC) as the final effector. In this study, we established a method to chronically elevate endogenous GC levels during early life in larval zebrafish. To this end, we employed an optogenetic actuator, beggiatoa photoactivated adenylyl cyclase, specifically expressed in the interrenal cells of zebrafish and demonstrate that its chronic activation leads to hypercortisolaemia and dampens the acute-stress evoked cortisol levels, across a variety of stressor modalities during early life. This blunting of stress-response was conserved in ontogeny at a later developmental stage. Furthermore, we observe a strong reduction of proopiomelanocortin (pomc)-expression in the pituitary as well as upregulation of fkbp5 gene expression. Going forward, we propose that this model can be leveraged to tease apart the mechanisms underlying developmental programming of the HPA/I axis by early-life GC exposure and its implications for vulnerability and resilience to stress in adulthood.
7.

Live-cell fluorescence imaging and optogenetic control of PKA kinase activity in fission yeast Schizosaccharomyces pombe.

blue bPAC (BlaC) S. cerevisiae Immediate control of second messengers
Yeast, 7 Apr 2024 DOI: 10.1002/yea.3937 Link to full text
Abstract: The cAMP-PKA signaling pathway plays a crucial role in sensing and responding to nutrient availability in the fission yeast Schizosaccharomyces pombe. This pathway monitors external glucose levels to control cell growth and sexual differentiation. However, the temporal dynamics of the cAMP-PKA pathway in response to external stimuli remains unclear mainly due to the lack of tools to quantitatively visualize the activity of the pathway. Here, we report the development of the kinase translocation reporter (KTR)-based biosensor spPKA-KTR1.0, which allows us to measure the dynamics of PKA activity in fission yeast cells. The spPKA-KTR1.0 is derived from the transcription factor Rst2, which translocates from the nucleus to the cytoplasm upon PKA activation. We found that spPKA-KTR1.0 translocates between the nucleus and cytoplasm in a cAMP-PKA pathway-dependent manner, indicating that the spPKA-KTR1.0 is a reliable indicator of the PKA activity in fission yeast cells. In addition, we implemented a system that simultaneously visualizes and manipulates the cAMP-PKA signaling dynamics by introducing bPAC, a photoactivatable adenylate cyclase, in combination with spPKA-KTR1.0. This system offers an opportunity for investigating the role of the signaling dynamics of the cAMP-PKA pathway in fission yeast cells with higher temporal resolution.
8.

A light-controlled phospholipase C for imaging of lipid dynamics and controlling neural plasticity.

blue iLID HEK293T mouse in vivo Immediate control of second messengers
Cell Chem Biol, 5 Apr 2024 DOI: 10.1016/j.chembiol.2024.03.001 Link to full text
Abstract: Phospholipase C (PLC) is a key enzyme that regulates physiological processes via lipid and calcium signaling. Despite advances in protein engineering, no tools are available for direct PLC control. Here, we developed a novel optogenetic tool, light-controlled PLCβ (opto-PLCβ). Opto-PLCβ uses a light-induced dimer module, which directs an engineered PLC to the plasma membrane in a light-dependent manner. Our design includes an autoinhibitory capacity, ensuring stringent control over PLC activity. Opto-PLCβ triggers reversible calcium responses and lipid dynamics in a restricted region, allowing precise spatiotemporal control of PLC signaling. Using our system, we discovered that phospholipase D-mediated phosphatidic acid contributes to diacylglycerol clearance on the plasma membrane. Moreover, we extended its applicability in vivo, demonstrating that opto-PLCβ can enhance amygdala synaptic plasticity and associative fear learning in mice. Thus, opto-PLCβ offers precise spatiotemporal control, enabling comprehensive investigation of PLC-mediated signaling pathways, lipid dynamics, and their physiological consequences in vivo.
9.

Light-Mediated Enhancement of Glucose-Stimulated Insulin Release of Optogenetically Engineered Human Pancreatic Beta-Cells.

blue bPAC (BlaC) human pancreatic beta cells Immediate control of second messengers
ACS Synth Biol, 20 Feb 2024 DOI: 10.1021/acssynbio.3c00653 Link to full text
Abstract: Enhancement of glucose-stimulated insulin secretion (GSIS) in exogenously delivered pancreatic β-cells is desirable, for example, to overcome the insulin resistance manifested in type 2 diabetes or to reduce the number of β-cells for supporting homeostasis of blood sugar in type 1 diabetes. Optogenetically engineered cells can potentiate their function with exposure to light. Given that cyclic adenosine monophosphate (cAMP) mediates GSIS, we surmised that optoamplification of GSIS is feasible in human β-cells carrying a photoactivatable adenylyl cyclase (PAC). To this end, human EndoC-βH3 cells were engineered to express a blue-light-activated PAC, and a workflow was established combining the scalable manufacturing of pseudoislets (PIs) with efficient adenoviral transduction, resulting in over 80% of cells carrying PAC. Changes in intracellular cAMP and GSIS were determined with the photoactivation of PAC in vitro as well as after encapsulation and implantation in mice with streptozotocin-induced diabetes. cAMP rapidly rose in β-cells expressing PAC with illumination and quickly declined upon its termination. Light-induced amplification in cAMP was concomitant with a greater than 2-fold GSIS vs β-cells without PAC in elevated glucose. The enhanced GSIS retained its biphasic pattern, and the rate of oxygen consumption remained unchanged. Diabetic mice receiving the engineered β-cell PIs exhibited improved glucose tolerance upon illumination compared to those kept in the dark or not receiving cells. The findings support the use of optogenetics for molecular customization of the β-cells toward better treatments for diabetes without the adverse effects of pharmacological approaches.
10.

Live-cell fluorescence imaging and optogenetic control of PKA kinase activity in fission yeast Schizosaccharomyces pombe.

blue bPAC (BlaC) S. pombe Immediate control of second messengers
bioRxiv, 15 Jan 2024 DOI: 10.1101/2024.01.14.575615 Link to full text
Abstract: The cAMP-PKA signaling pathway plays a crucial role in sensing and responding to nutrient availability in the fission yeast Schizosaccharomyces pombe. This pathway monitors external glucose levels to control cell growth and sexual differentiation. However, the temporal dynamics of the cAMP-PKA pathway in response to external stimuli remains unclear mainly due to the lack of tools to quantitatively visualize the activity of the pathway. Here, we report the development of the kinase translocation reporter (KTR)-based biosensor spPKA-KTR1.0, which allows us to measure the dynamics of PKA activity in fission yeast cells. The spPKA-KTR1.0 is derived from the transcription factor Rst2, which translocates from the nucleus to the cytoplasm upon PKA activation. We found that spPKA-KTR1.0 translocates between the nucleus and cytoplasm in a cAMP-PKA pathway-dependent manner, indicating that the spPKA-KTR1.0 is a reliable indicator of the PKA activity in fission yeast cells. In addition, we implemented a system that simultaneously visualizes and manipulates the cAMP-PKA signaling dynamics by introducing bPAC, a photoactivatable adenylate cyclase, in combination with spPKA-KTR1.0. This system offers an opportunity for investigating the role of the signaling dynamics of the cAMP-PKA pathway in fission yeast cells with higher temporal resolution.
11.

Neuropeptidergic regulation of neuromuscular signaling in larval zebrafish alters swimming behavior and synaptic transmission.

blue bPAC (BlaC) zebrafish in vivo Immediate control of second messengers Neuronal activity control
bioRxiv, 12 Jan 2024 DOI: 10.1101/2024.01.12.575339 Link to full text
Abstract: The regulation of synaptic transmission is crucial for plasticity, homeostasis and learning. Chemical synaptic transmission is thus modulated to accommodate different activity levels, which also enables homeostatic scaling in pre- and postsynaptic compartments. In nematodes, cAMP signaling enhances cholinergic neuron output, and these neurons use neuropeptide signaling to modulate synaptic vesicle content. To explore if this mechanism is conserved in vertebrates, we studied the involvement of neuropeptides in cholinergic transmission at the neuromuscular junction of larval zebrafish. Optogenetic stimulation by photoactivated adenylyl cyclase (bPAC) resulted in elevated locomotion as measured in behavioural assays. Furthermore, post-synaptic patch-clamp recordings revealed that in bPAC transgenics, the frequency of miniature excitatory postsynaptic currents (mEPSCs) was increased after photostimulation. These results suggested that cAMP-mediated activation of ZF motor neurons leads to increased fusion of SVs, consequently resulting in enhanced neuromuscular activity. We generated mutants lacking the neuropeptide processing enzyme carboxypeptidase E (cpe), and the most abundant neuropeptide precursor in motor neurons, tachykinin (tac1). Both mutants showed exaggerated locomotion after photostimulation. cpe mutants exhibit lower mEPSC frequency during photostimulation and less large-amplitude mEPSCs. In tac1 mutants mEPSC frequency was not affected but amplitudes were significantly smaller. Exaggerated locomotion in the mutants thus reflected upscaling of postsynaptic excitability. cpe and tac1 mutant muscles expressed more nicotinic acetylcholine receptors (nAChR) on their surface. Thus, neuropeptide signaling regulates synaptic transmitter output in zebrafish motor neurons, and muscle cells homeostatically regulate nAChR surface expression, compensating reduced presynaptic input. This mechanism may be widely conserved in the animal kingdom.
12.

Lifelong molecular consequences of high Glucocorticoids exposure during development

blue bPAC (BlaC) zebrafish in vivo Developmental processes Immediate control of second messengers
bioRxiv, 9 Jan 2024 DOI: 10.1101/2023.02.13.528363 Link to full text
Abstract: Early life stress (ELS) is one of the strongest risk factors for developing psychiatric disorders in humans. As conserved key stress hormones of vertebrates, glucocorticoids (GCs) are thought to play an important role in mediating the effects of ELS exposure in shaping adult phenotypes. In this process, early exposure to high level of GCs may induce molecular changes that alter developmental trajectory of an animal and primes differential adult responses. However, comprehensive characterization of identities of molecules that are targeted by developmental GC exposure is currently lacking. In our study, we describe lifelong molecular consequences of high level of developmental GC exposure using an optogenetic zebrafish model. First, we developed a new double-hit stress model using zebrafish by combining exposure to a high endogenous GC level during development and acute adulthood stress exposure. Our results establish that similar to ELS-exposed humans and rodents, developmental GC exposed zebrafish model shows altered behavior and stress hypersensitivity in adulthood. Second, we generated time-series gene expression profiles of the brains in larvae, in adult, and upon stress exposure to identify molecular alterations induced by high developmental GC exposure at different developmental stages. Third, we identify a set of GC-primed genes that show altered expression upon acute stress exposure only in animals exposed to a high developmental GC. Interestingly, our datasets of GC primed genes are enriched in risk factors identified for human psychiatric disorders. Lastly, we identify potential epigenetic regulatory elements and associated post-transcriptional modifications following high developmental GC exposure. Thus, we present a translationally relevant zebrafish model for studying stress hypersensitivity and alteration of behavior induced by exposure to elevated GC levels during development. Our study provides comprehensive datasets delineating potential molecular targets underlying the impact of developmental high GC exposure on adult responses.
13.

Pathogen infection induces sickness behaviors by recruiting neuromodulatory systems linked to stress and satiety in C. elegans.

blue bPAC (BlaC) C. elegans in vivo Immediate control of second messengers
bioRxiv, 5 Jan 2024 DOI: 10.1101/2024.01.05.574345 Link to full text
Abstract: When animals are infected by a pathogen, peripheral sensors of infection signal to the brain to coordinate a set of adaptive behavioral changes known as sickness behaviors. While the pathways that signal from the periphery to the brain have been intensively studied in recent years, how central circuits are reconfigured to elicit sickness behaviors is not well understood. Here we find that neuromodulatory systems linked to stress and satiety are recruited upon infection to drive sickness behaviors in C. elegans. Upon chronic infection by the bacterium Pseudomonas aeruginosa PA14, C. elegans decrease their feeding behavior, then display reversible bouts of quiescence, and eventually die. The ALA neuron and its neuropeptides FLP-7, FLP-24, and NLP-8, which control stress-induced sleep in uninfected animals, promote the PA14-induced feeding reduction. However, the ALA neuropeptide FLP-13 instead acts to delay quiescence and death in infected animals. Cell-specific genetic perturbations show that the neurons that release FLP-13 to delay quiescence in infected animals are distinct from ALA. A brain-wide imaging screen reveals that infection-induced quiescence involves ASI and DAF-7/TGF-beta, which control satiety-induced quiescence in uninfected animals. Our results suggest that a common set of neuromodulators are recruited across different physiological states, acting from distinct neural sources and in distinct combinations to drive state-dependent behaviors.
14.

Bidirectional Allosteric Coupling between PIP2 Binding and the Pore of the Oncochannel TRPV6.

blue CRY2/CIB1 HEK293 Immediate control of second messengers
Int J Mol Sci, 3 Jan 2024 DOI: 10.3390/ijms25010618 Link to full text
Abstract: The epithelial ion channel TRPV6 plays a pivotal role in calcium homeostasis. Channel function is intricately regulated at different stages, involving the lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Given that dysregulation of TRPV6 is associated with various diseases, including different types of cancer, there is a compelling need for its pharmacological targeting. Structural studies provide insights on how TRPV6 is affected by different inhibitors, with some binding to sites else occupied by lipids. These include the small molecule cis-22a, which, however, also binds to and thereby blocks the pore. By combining calcium imaging, electrophysiology and optogenetics, we identified residues within the pore and the lipid binding site that are relevant for regulation by cis-22a and PIP2 in a bidirectional manner. Yet, mutation of the cytosolic pore exit reduced inhibition by cis-22a but preserved sensitivity to PIP2 depletion. Our data underscore allosteric communication between the lipid binding site and the pore and vice versa for most sites along the pore.
15.

Rab3 mediates cyclic AMP-dependent presynaptic plasticity and olfactory learning.

blue bPAC (BlaC) D. melanogaster in vivo Immediate control of second messengers
bioRxiv, 22 Dec 2023 DOI: 10.1101/2023.12.21.572589 Link to full text
Abstract: Presynaptic forms of plasticity occur throughout the nervous system and play an important role in learning and memory but the underlying molecular mechanisms are insufficiently understood. Here we show that the small GTPase Rab3 is a key mediator of cyclic AMP (cAMP)-induced presynaptic plasticity in Drosophila. Pharmacological and optogenetic cAMP production triggered concentration-dependent alterations of synaptic transmission, including potentiation and depression of evoked neurotransmitter release, as well as strongly facilitated spontaneous release. These changes correlated with a nanoscopic rearrangement of the active zone protein Unc13A and required Rab3. To link these results to animal behaviour, we turned to the established role of cAMP signalling in memory formation and demonstrate that Rab3 is necessary for olfactory learning. As Rab3 is dispensable for basal synaptic transmission, these findings highlight a molecular pathway specifically dedicated to tuning neuronal communication and adaptive behaviour.
16.

Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia.

blue CRY2clust MDCK Signaling cascade control Immediate control of second messengers
bioRxiv, 18 Dec 2023 DOI: 10.7554/elife.86727.2 Link to full text
Abstract: Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph, R.E., et al., 2020, https://doi.org/10.7554/eLife.60470 ). Here we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.
17.

AAV-compatible optogenetic tools for activating endogenous calcium channels in vivo.

blue CRY2/CIB1 CRY2/CRY2 BV-2 HeLa mouse astrocytes primary mouse hippocampal neurons Immediate control of second messengers
Mol Brain, 17 Oct 2023 DOI: 10.1186/s13041-023-01061-7 Link to full text
Abstract: Calcium ions (Ca2+) play pivotal roles in regulating diverse brain functions, including cognition, emotion, locomotion, and learning and memory. These functions are intricately regulated by a variety of Ca2+-dependent cellular processes, encompassing synaptic plasticity, neuro/gliotransmitter release, and gene expression. In our previous work, we developed 'monster OptoSTIM1' (monSTIM1), an improved OptoSTIM1 that selectively activates Ca2+-release-activated Ca2+ (CRAC) channels in the plasma membrane through blue light, allowing precise control over intracellular Ca2+ signaling and specific brain functions. However, the large size of the coding sequence of monSTIM1 poses a limitation for its widespread use, as it exceeds the packaging capacity of adeno-associated virus (AAV). To address this constraint, we have introduced monSTIM1 variants with reduced coding sequence sizes and established AAV-based systems for expressing them in neurons and glial cells in the mouse brain. Upon expression by AAVs, these monSTIM1 variants significantly increased the expression levels of cFos in neurons and astrocytes in the hippocampal CA1 region following non-invasive light illumination. The use of monSTIM1 variants offers a promising avenue for investigating the spatiotemporal roles of Ca2+-mediated cellular activities in various brain functions. Furthermore, this toolkit holds potential as a therapeutic strategy for addressing brain disorders associated with aberrant Ca2+ signaling.
18.

Visual quantification of prostaglandin E2 discharge from a single cell.

blue CRY2clust HeLa MDCK Immediate control of second messengers
Cell Struct Funct, 7 Oct 2023 DOI: 10.1247/csf.23047 Link to full text
Abstract: Calcium transients drive cells to discharge prostaglandin E2 (PGE2). We visualized PGE2-induced protein kinase A (PKA) activation and quantitated PGE2 secreted from a single cell by combining fluorescence microscopy and a simulation model. For this purpose, we first prepared PGE2-producer cells that express either an optogenetic or a chemogenetic calcium channel stimulator: OptoSTIM1 or Gq-DREADD, respectively. Second, we prepared reporter cells expressing the Gs-coupled PGE2 reporter EP2 and the PKA biosensor Booster-PKA, which is based on the principle of Förster resonance energy transfer (FRET). Upon the stimulation-induced triggering of calcium transients, a single producer cell discharges PGE2 to stimulate PKA in the surrounding reporter cells. Due to the flow of the medium, the PKA-activated area exhibited a comet-like smear when HeLa cells were used. In contrast, radial PKA activation was observed when confluent MDCK cells were used, indicating that PGE2 diffusion was restricted to the basolateral space. By fitting the radius of the PKA-activated area to a simulation model based on simple diffusion, we estimated that a single HeLa cell secretes 0.25 fmol PGE2 upon a single calcium transient to activate PKA in more than 1000 neighboring cells. This model also predicts that the PGE2 discharge rate is comparable to the diffusion rate. Thus, our method quantitatively envisions that a single calcium transient affects more than 1000 neighboring cells via PGE2.Key words: prostaglandin E2, imaging, intercellular communication, biosensor, quantification.
19.

CaaX-motif-adjacent residues influence G protein gamma (Gγ) prenylation under suboptimal conditions.

blue iLID HeLa Immediate control of second messengers
J Biol Chem, 20 Sep 2023 DOI: 10.1016/j.jbc.2023.105269 Link to full text
Abstract: Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation. Pharmacological inhibition of the lipid synthesis pathway by statins is a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential inhibition. We examined the prenylation of carboxy-terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to prenylation and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide, statin sensitivity, and extent of prenylation. Our results also show a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings indicate a plausible mechanism allowing for statins to differentially perturb heterotrimeric G protein signaling in cells depending on their Gγ-subtype composition. Our results may also provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.
20.

Engineering Bacteriophytochrome-coupled Photoactivated Adenylyl Cyclases for Enhanced Optogenetic cAMP Modulation.

red DmPAC E. coli Transgene expression Immediate control of second messengers
J Mol Biol, 31 Aug 2023 DOI: 10.1016/j.jmb.2023.168257 Link to full text
Abstract: Sensory photoreceptors abound in nature and enable organisms to adapt behavior, development, and physiology to environmental light. In optogenetics, photoreceptors allow spatiotemporally precise, reversible, and non-invasive control by light of cellular processes. Notwithstanding the development of numerous optogenetic circuits, an unmet demand exists for efficient systems sensitive to red light, given its superior penetration of biological tissue. Bacteriophytochrome photoreceptors sense the ratio of red and far-red light to regulate the activity of enzymatic effector modules. The recombination of bacteriophytochrome photosensor modules with cyclase effectors underlies photoactivated adenylyl cyclases (PAC) that catalyze the synthesis of the ubiquitous second messenger 3', 5'-cyclic adenosine monophosphate (cAMP). Via homologous exchanges of the photosensor unit, we devised novel PACs, with the variant DmPAC exhibiting 40-fold activation of cyclase activity under red light, thus surpassing previous red-light-responsive PACs. Modifications of the PHY tongue modulated the responses to red and far-red light. Exchanges of the cyclase effector offer an avenue to further enhancing PACs but require optimization of the linker to the photosensor. DmPAC and a derivative for 3', 5'-cyclic guanosine monophosphate allow the manipulation of cyclic-nucleotide-dependent processes in mammalian cells by red light. Taken together, we advance the optogenetic control of second-messenger signaling and provide insight into the signaling and design of bacteriophytochrome receptors.
21.

Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases.

blue bPAC (BlaC) OaPAC zebrafish in vivo Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Elife, 17 Aug 2023 DOI: 10.7554/elife.83975 Link to full text
Abstract: Even though microbial photosensitive proteins have been used for optogenetics, their use should be optimized to precisely control cell and tissue functions in vivo. We exploited GtCCR4 and KnChR, cation channelrhodopsins from algae, BeGC1, a guanylyl cyclase rhodopsin from a fungus, and photoactivated adenylyl cyclases (PACs) from cyanobacteria (OaPAC) or bacteria (bPAC), to control cell functions in zebrafish. Optical activation of GtCCR4 and KnChR in the hindbrain reticulospinal V2a neurons, which are involved in locomotion, induced swimming behavior at relatively short latencies, whereas activation of BeGC1 or PACs achieved it at long latencies. Activation of GtCCR4 and KnChR in cardiomyocytes induced cardiac arrest, whereas activation of bPAC gradually induced bradycardia. KnChR activation led to an increase in intracellular Ca2+ in the heart, suggesting that depolarization caused cardiac arrest. These data suggest that these optogenetic tools can be used to reveal the function and regulation of zebrafish neurons and cardiomyocytes.
22.

Remotely Controllable Engineered Bacteria for Targeted Therapy of Pseudomonas aeruginosa Infection.

red BphS P. aeruginosa Immediate control of second messengers
ACS Synth Biol, 7 Jul 2023 DOI: 10.1021/acssynbio.2c00655 Link to full text
Abstract: Pseudomonas aeruginosa (P. aeruginosa) infection has become an intractable problem worldwide due to the decreasing efficacy of the mainstay therapy, antibiotic treatment. Hence, exploring new drugs and therapies to address this issue is crucial. Here, we construct a chimeric pyocin (ChPy) to specifically kill P. aeruginosa and engineer a near-infrared (NIR) light-responsive strain to produce and deliver this drug. Our engineered bacterial strain can continuously produce ChPy in the absence of light and release it to kill P. aeruginosa via remotely and precisely controlled bacterial lysis induced by NIR light. We demonstrate that our engineered bacterial strain is effective in P. aeruginosa-infected wound therapy in the mouse model, as it eradicated PAO1 in mouse wounds and shortened the wound healing time. Our work presents a potentially spatiotemporal and noninvasively controlled therapeutic strategy of engineered bacteria for the targeted treatment of P. aeruginosa infections.
23.

All-optical mapping of cAMP transport reveals rules of sub-cellular localization.

blue bPAC (BlaC) HEK293T MDCK rat hippocampal neurons Immediate control of second messengers
bioRxiv, 29 Jun 2023 DOI: 10.1101/2023.06.27.546633 Link to full text
Abstract: Cyclic adenosine monophosphate (cAMP) is a second messenger that mediates diverse intracellular signals. Studies of cAMP transport in cells have produced wildly different results, from reports of nearly free diffusion to reports that cAMP remains localized in nanometer-scale domains. We developed an all-optical toolkit, termed cAMP-SITES, to locally perturb and map cAMP transport. In MDCK cells and in cultured neurons, cAMP had a diffusion coefficient of ~120 μm2/s, similar to the diffusion coefficients of other small molecules in cytoplasm. In neuronal dendrites, a balance between diffusion and degradation led to cAMP domains with a length scale of ~30 μm. Geometrical confinement by membranes led to subcellular variations in cAMP concentration, but we found no evidence of nanoscale domains or of distinct membrane-local and cytoplasmic pools. We introduce theoretical relations between cell geometry and small-molecule reaction-diffusion dynamics and transport to explain our observations.
24.

Engineering of NEMO as calcium indicators with large dynamics and high sensitivity.

blue AsLOV2 HeLa Immediate control of second messengers
Nat Methods, 20 Apr 2023 DOI: 10.1038/s41592-023-01852-9 Link to full text
Abstract: Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold). NEMO indicators report Ca2+ transients with peak SBRs around 20-fold larger than the top-of-the-range GCaMP6 series. NEMO sensors further enable the quantification of absolution calcium concentration with ratiometric or photochromic imaging. Compared with GCaMP6s, NEMOs could detect single action potentials in neurons with a peak SBR two times higher and a median peak SBR four times larger in vivo, thereby outperforming most existing state-of-the-art GECIs. Given their high sensitivity and resolution to report intracellular Ca2+ signals, NEMO sensors may find broad applications in monitoring neuronal activities and other Ca2+-modulated physiological processes in both mammals and plants.
25.

Light-stimulated insulin secretion from pancreatic islet-like organoids derived from human pluripotent stem cells.

blue CRY2/CRY2 hESCs human IPSCs mouse in vivo Immediate control of second messengers
Mol Ther, 16 Mar 2023 DOI: 10.1016/j.ymthe.2023.03.013 Link to full text
Abstract: Optogenetic techniques permit non-invasive, spatiotemporal, and reversible modulation of cellular activities. Here, we report a novel optogenetic regulatory system for insulin secretion in human pluripotent stem cell (hPSC)-derived pancreatic islet-like organoids using monSTIM1 (monster-opto-Stromal interaction molecule 1), an ultra-light-sensitive OptoSTIM1 variant. The monSTIM1 transgene was incorporated at the AAVS1 locus in human embryonic stem cells (hESCs) by CRISPR-Cas9-mediated genome editing. Not only were we able to elicit light-induced intracellular Ca2+ concentration ([Ca2+]i) transients from the resulting homozygous monSTIM1+/+-hESCs, but we also successfully differentiated them into pancreatic islet-like organoids (PIOs). Upon light stimulation, the β-cells in these monSTIM1+/+-PIOs displayed reversible and reproducible [Ca2+]i transient dynamics. Furthermore, in response to photoexcitation, they secreted human insulin. Light-responsive insulin secretion was similarly observed in monSTIM1+/+-PIOs produced from neonatal diabetes (ND) patient-derived induced pluripotent stem cells (iPSCs). Under LED illumination, monSTIM1+/+-PIO-transplanted diabetic mice produced human c-peptide. Collectively, we developed a cellular model for the optogenetic control of insulin secretion using hPSCs, with the potential to be applied to the amelioration of hyperglycemic disorders.
Submit a new publication to our database