Showing 1 - 25 of 26 results
Not Review
Not Background
1.
Antidiabetic Close Loop Based on Wearable DNA-Hydrogel Glucometer and Implantable Optogenetic Cells.
-
Man, T
-
Yu, G
-
Zhu, F
-
Huang, Y
-
Wang, Y
-
Su, Y
-
Deng, S
-
Pei, H
-
Li, L
-
Ye, H
-
Wan, Y
Abstract:
Diabetes mellitus and its associated secondary complications have become a pressing global healthcare issue. The current integrated theranostic plan involves a glucometer-tandem pump. However, external condition-responsive insulin delivery systems utilizing rigid glucose sensors pose challenges in on-demand, long-term insulin administration. To overcome these challenges, we present a novel model of antidiabetic management based on printable metallo-nucleotide hydrogels and optogenetic engineering. The conductive hydrogels were self-assembled by bioorthogonal chemistry using oligonucleotides, carbon nanotubes, and glucose oxidase, enabling continuous glucose monitoring in a broad range (0.5-40 mM). The optogenetically engineered cells were enabled glucose regulation in type I diabetic mice via a far-red light-induced transgenic expression of insulin with a month-long avidity. Combining with a microchip-integrated microneedle patch, a prototyped close-loop system was constructed. The glucose levels detected by the sensor were received and converted by a wireless controller to modulate far-infrared light, thereby achieving on-demand insulin expression for several weeks. This study sheds new light on developing next-generation diagnostic and therapy systems for personalized and digitalized precision medicine.
2.
A programmable protease-based protein secretion platform for therapeutic applications.
Abstract:
Cell-based therapies represent potent enabling technologies in biomedical science. However, current genetic control systems for engineered-cell therapies are predominantly based on the transcription or translation of therapeutic outputs. Here we report a protease-based rapid protein secretion system (PASS) that regulates the secretion of pretranslated proteins retained in the endoplasmic reticulum (ER) owing to an ER-retrieval signal. Upon cleavage by inducible proteases, these proteins are secreted. Three PASS variants (chemPASS, antigenPASS and optoPASS) are developed. With chemPASS, we demonstrate the reversal of hyperglycemia in diabetic mice within minutes via drug-induced insulin secretion. AntigenPASS-equipped cells recognize the tumor antigen and secrete granzyme B and perforin, inducing targeted cell apoptosis. Finally, results from mouse models of diabetes, hypertension and inflammatory pain demonstrate light-induced, optoPASS-mediated therapeutic peptide secretion within minutes, conferring anticipated therapeutic benefits. PASS is a flexible platform for rapid delivery of therapeutic proteins that can facilitate the development and adoption of cell-based precision therapies.
3.
Remotely Controllable Engineered Bacteria for Targeted Therapy of Pseudomonas aeruginosa Infection.
Abstract:
Pseudomonas aeruginosa (P. aeruginosa) infection has become an intractable problem worldwide due to the decreasing efficacy of the mainstay therapy, antibiotic treatment. Hence, exploring new drugs and therapies to address this issue is crucial. Here, we construct a chimeric pyocin (ChPy) to specifically kill P. aeruginosa and engineer a near-infrared (NIR) light-responsive strain to produce and deliver this drug. Our engineered bacterial strain can continuously produce ChPy in the absence of light and release it to kill P. aeruginosa via remotely and precisely controlled bacterial lysis induced by NIR light. We demonstrate that our engineered bacterial strain is effective in P. aeruginosa-infected wound therapy in the mouse model, as it eradicated PAO1 in mouse wounds and shortened the wound healing time. Our work presents a potentially spatiotemporal and noninvasively controlled therapeutic strategy of engineered bacteria for the targeted treatment of P. aeruginosa infections.
4.
Programming the lifestyles of engineered bacteria for cancer therapy.
Abstract:
Bacteria can be genetically engineered to act as therapeutic delivery vehicles in the treatment of tumors, killing cancer cells or activating the immune system. This is known as bacteria-mediated cancer therapy (BMCT). Tumor invasion, colonization and tumor regression are major biological events, which are directly associated with antitumor effects and are uncontrollable due to the influence of tumor microenvironments during the BMCT process. Here, we developed a genetic circuit for dynamically programming bacterial lifestyles (planktonic, biofilm or lysis), to precisely manipulate the process of bacterial adhesion, colonization and drug release in the BMCT process, via hierarchical modulation of the lighting power density of near-infrared (NIR) light. The deep tissue penetration of NIR offers us a modality for spatio-temporal and non-invasive control of bacterial genetic circuits in vivo. By combining computational modeling with a high-throughput characterization device, we optimized the genetic circuits in engineered bacteria to program the process of bacterial lifestyle transitions by altering the illumination scheme of NIR. Our results showed that programming intratumoral bacterial lifestyle transitions allows precise control of multiple key steps throughout the BMCT process and therapeutic efficacy can be greatly improved by controlling the localization and dosage of therapeutic agents via optimizing the illumination scheme.
5.
Measurement of Secreted Embryonic Alkaline Phosphatase.
Abstract:
Secreted reporters have been demonstrated to be simple and useful tools for analyzing transcriptional regulation in mammalian cells. The distinctive feature of these assays is the ability to detect reporter gene expression in the culture supernatant without affecting the cell physiology or leading to cell lysis, which allows repeated experimentation and sampling of the culture medium using the same cell cultures. Secreted embryonic alkaline phosphatase (SEAP) is one of the most widely used reporter, which can be easily detected using colorimetry following incubation with a substrate, such as p-nitrophenol phosphate. In this report, we present detailed procedures for detection and quantification of the SEAP reporter. We believe that this step-by-step protocol can be easily used by researchers to monitor and measure molecular genetic events in a variety of mammalian cells due to its simplicity and ease of handling. Graphical abstract Schematic overview of the workflow described in this protocol.
6.
Optogenetic-controlled immunotherapeutic designer cells for post-surgical cancer immunotherapy.
-
Yu, Y
-
Wu, X
-
Wang, M
-
Liu, W
-
Zhang, L
-
Zhang, Y
-
Hu, Z
-
Zhou, X
-
Jiang, W
-
Zou, Q
-
Cai, F
-
Ye, H
Abstract:
Surgical resection is the main treatment option for most solid tumors, yet cancer recurrence after surgical resection remains a significant challenge in cancer therapy. Recent advances in cancer immunotherapy are enabling radical cures for many tumor patients, but these technologies remain challenging to apply because of side effects related to uncontrollable immune system activation. Here, we develop far-red light-controlled immunomodulatory engineered cells (FLICs) that we load into a hydrogel scaffold, enabling the precise optogenetic control of cytokines release (IFN-β, TNF-α, and IL-12) upon illumination. Experiments with a B16F10 melanoma resection mouse model show that FLICs-loaded hydrogel implants placed at the surgical wound site achieve sustainable release of immunomodulatory cytokines, leading to prevention of tumor recurrence and increased animal survival. Moreover, the FLICs-loaded hydrogel implants elicit long-term immunological memory that prevents against tumor recurrence. Our findings illustrate that this optogenetic perioperative immunotherapy with FLICs-loaded hydrogel implants offers a safe treatment option for solid tumors based on activating host innate and adaptive immune systems to inhibit tumor recurrence after surgery. Beyond extending the optogenetics toolbox for immunotherapy, we envision that our optogenetic-controlled living cell factory platform could be deployed for other biomedical contexts requiring precision induction of bio-therapeutic dosage.
7.
An adaptive tracking illumination system for optogenetic control of single bacterial cells.
Abstract:
Single-cell behaviors are essential during early-stage biofilm formation. In this study, we aimed to evaluate whether single-cell behaviors could be precisely and continuously manipulated by optogenetics. We thus established adaptive tracking illumination (ATI), a novel illumination method to precisely manipulate the gene expression and bacterial behavior of Pseudomonas aeruginosa on the surface at the single-cell level by using the combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation, and adaptive microscopy. ATI enables precise gene expression control by manipulating the optogenetic module gene expression and type IV pili (TFP)-mediated motility and microcolony formation during biofilm formation through bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) level modifications in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms could be controlled using ATI. Therefore, this novel method we established might markedly answer various questions or resolve problems in microbiology. KEY POINTS: • High-resolution spatial and continuous optogenetic control of individual bacteria. • Phenotype-specific optogenetic control of individual bacteria. • Capacity to control biologically relevant processes in engineered single cells.
8.
A Self-Powered Optogenetic System for Implantable Blood Glucose Control.
-
Liu, Z
-
Zhou, Y
-
Qu, X
-
Xu, L
-
Zou, Y
-
Shan, Y
-
Shao, J
-
Wang, C
-
Liu, Y
-
Xue, J
-
Jiang, D
-
Fan, Y
-
Li, Z
-
Ye, H
Abstract:
Diabetes treatment and rehabilitation are usually a lifetime process. Optogenetic engineered designer cell-therapy holds great promise in regulating blood glucose homeostasis. However, portable, sustainable, and long-term energy supplementation has previously presented a challenge for the use of optogenetic stimulation in vivo. Herein, we purpose a self-powered optogenetic system (SOS) for implantable blood glucose control. The SOS consists of a biocompatible far-red light (FRL) source, FRL-triggered transgene-expressing cells, a power management unit, and a flexible implantable piezoelectric nanogenerator (i-PENG) to supply long-term energy by converting biomechanical energy into electricity. Our results show that this system can harvest energy from body movement and power the FRL source, which then significantly enhanced production of a short variant of human glucagon-like peptide 1 (shGLP-1) in vitro and in vivo. Indeed, diabetic mice equipped with the SOS showed rapid restoration of blood glucose homeostasis, improved glucose, and insulin tolerance. Our results suggest that the SOS is sufficiently effective in self-powering the modulation of therapeutic outputs to control glucose homeostasis and, furthermore, present a new strategy for providing energy in optogenetic-based cell therapy.
9.
Far-Red Light Triggered Production of Bispecific T Cell Engagers (BiTEs) from Engineered Cells for Antitumor Application.
Abstract:
Bispecific T-cell engagers (BiTEs), which have shown potent antitumor activity in humans, are emerging as one of the most promising immunotherapeutic strategies for cancer treatment in recent years. However, the clinical application of BiTEs nowadays has been hampered by their short half-life in the circulatory system due to their low molecular weight and rapid renal clearance. Inevitable continuous infusion of BiTEs has become a routine operation in order to achieve effective treatment, although it is costly, inconvenient, time-consuming, and even painful for patients in some cases. To develop an on-demand, tunable, and reversible approach to overcome these limitations, we assembled a transcription-control device into mammalian cells based on a bacterial far-red light (FRL) responsive signaling pathway to drive the expression of a BiTE against Glypican 3 (GPC3), which is a highly tumor-specific antigen expressed in most hepatocellular carcinomas (HCC). As demonstrated in in vitro experiments, we proved that the FRL sensitive device spatiotemporally responded to the control of FRL illumination and produced a therapeutic level of BiTEs that recruited and activated human T cells to eliminate GPC3 positive tumor cells. By functionally harnessing the power of optogenetics to remotely regulate the production of BiTEs from bioengineered cells and demonstrating its effectiveness in treating tumor cells, this study provides a novel approach to achieve an in vivo supply of BiTEs, which could be potentially applied to other formats of bispecific antibodies and facilitate their clinical applications.
10.
A far-red light-inducible CRISPR-Cas12a platform for remote-controlled genome editing and gene activation.
Abstract:
The CRISPR-Cas12a has been harnessed as a powerful tool for manipulating targeted gene expression. The possibility to manipulate the activity of CRISPR-Cas12a with a more precise spatiotemporal resolution and deep tissue permeability will enable targeted genome engineering and deepen our understanding of the gene functions underlying complex cellular behaviors. However, currently available inducible CRISPR-Cas12a systems are limited by diffusion, cytotoxicity, and poor tissue permeability. Here, we developed a far-red light (FRL)–inducible CRISPR-Cas12a (FICA) system that can robustly induce gene editing in mammalian cells, and an FRL-inducible CRISPR-dCas12a (FIdCA) system based on the protein-tagging system SUperNova (SunTag) that can be used for gene activation under light-emitting diode–based FRL. Moreover, we show that the FIdCA system can be deployed to activate target genes in mouse livers. These results demonstrate that these systems developed here provide robust and efficient platforms for programmable genome manipulation in a noninvasive and spatiotemporal fashion.
11.
Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control.
Abstract:
Diabetes affects almost half a billion people, and all individuals with type 1 diabetes (T1D) and a large portion of individuals with type 2 diabetes rely on self-administration of the peptide hormone insulin to achieve glucose control. However, this treatment modality has cumbersome storage and equipment requirements and is susceptible to fatal user error. Here, reasoning that a cell-based therapy could be coupled to an external induction circuit for blood glucose control, as a proof of concept we developed far-red light (FRL)-activated human islet-like designer (FAID) cells and demonstrated how FAID cell implants achieved safe and sustained glucose control in diabetic model mice. Specifically, by introducing a FRL-triggered optogenetic device into human mesenchymal stem cells (hMSCs), which we encapsulated in poly-(l-lysine)-alginate and implanted subcutaneously under the dorsum of T1D model mice, we achieved FRL illumination-inducible secretion of insulin that yielded improvements in glucose tolerance and sustained blood glucose control over traditional insulin glargine treatment. Moreover, the FAID cell implants attenuated both oxidative stress and development of multiple diabetes-related complications in kidneys. This optogenetics-controlled "living cell factory" platform could be harnessed to develop multiple synthetic designer therapeutic cells to achieve long-term yet precisely controllable drug delivery.
12.
Constructing a Smartphone-Controlled Semiautomatic Theranostic System for Glucose Homeostasis in Diabetic Mice.
Abstract:
With the development of mobile communication technology, smartphones have been used in point-of-care technologies (POCTs) as an important part of telemedicine. Using a multidisciplinary design principle coupling electrical engineering, software development, synthetic biology, and optogenetics, the investigators developed a smartphone-controlled semiautomatic theranostic system that regulates blood glucose homeostasis in diabetic mice in an ultraremote-control manner. The present chapter describes how the investigators tailor-designed the implant architecture "HydrogeLED," which is capable of coharboring a designer-cell-carrying alginate hydrogel and wirelessly powered far-red light LEDs. Using diabetes mellitus as a model disease, the in vivo expression of insulin or human glucagon-like peptide 1 (shGLP-1) from HydrogeLED implants could be controlled not only by pre-set ECNU-TeleMed programs, but also by a custom-engineered Bluetooth-active glucometer in a semiautomatic and glycemia-dependent manner. As a result, blood glucose homeostasis was semiautomatically maintained in diabetic mice through the smartphone-controlled semiautomatic theranostic system. By combining digital signals with optogenetically engineered cells, the present study provides a new method for the integrated diagnosis and treatment of diseases.
13.
Constructing Smartphone-Controlled Optogenetic Switches in Mammalian Cells.
Abstract:
With the increasing indispensable role of smartphones in our daily lives, the mobile health care system coupled with embedded physical sensors and modern communication technologies make it an attractive technology for enabling the remote monitoring of an individual's health. Using a multidisciplinary design principle coupled with smart electronics, software, and optogenetics, the investigators constructed smartphone-controlled optogenetic switches to enable the ultraremote-control transgene expression. A custom-designed SmartController system was programmed to process wireless signals from smartphones, enabling the regulation of therapeutic outputs production by optically engineered cells via a far-red light (FRL)-responsive optogenetic interface. In the present study, the investigators describe the details of the protocols for constructing smartphone-controlled optogenetic switches, including the rational design of an FRL-triggered transgene expression circuit, the procedure for cell culture and transfection, the implementation of the smartphone-controlled far-red light-emitting diode (LED) module, and the reporter detection assay.
14.
A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice.
Abstract:
The Cre-loxP recombination system is a powerful tool for genetic manipulation. However, there are widely recognized limitations with chemically inducible Cre-loxP systems, and the UV and blue-light induced systems have phototoxicity and minimal capacity for deep tissue penetration. Here, we develop a far-red light-induced split Cre-loxP system (FISC system) based on a bacteriophytochrome optogenetic system and split-Cre recombinase, enabling optogenetical regulation of genome engineering in vivo solely by utilizing a far-red light (FRL). The FISC system exhibits low background and no detectable photocytotoxicity, while offering efficient FRL-induced DNA recombination. Our in vivo studies showcase the strong organ-penetration capacity of FISC system, markedly outperforming two blue-light-based Cre systems for recombination induction in the liver. Demonstrating its strong clinical relevance, we successfully deploy a FISC system using adeno-associated virus (AAV) delivery. Thus, the FISC system expands the optogenetic toolbox for DNA recombination to achieve spatiotemporally controlled, non-invasive genome engineering in living systems.
15.
Engineering a far-red light–activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors.
Abstract:
It is widely understood that CRISPR-Cas9 technology is revolutionary, with well-recognized issues including the potential for off-target edits and the attendant need for spatiotemporal control of editing. Here, we describe a far-red light (FRL)–activated split-Cas9 (FAST) system that can robustly induce gene editing in both mammalian cells and mice. Through light-emitting diode–based FRL illumination, the FAST system can efficiently edit genes, including nonhomologous end joining and homology-directed repair, for multiple loci in human cells. Further, we show that FAST readily achieves FRL-induced editing of internal organs in tdTomato reporter mice. Finally, FAST was demonstrated to achieve FRL-triggered editing of the PLK1 oncogene in a mouse xenograft tumor model. Beyond extending the spectrum of light energies in optogenetic toolbox for CRISPR-Cas9 technologies, this study demonstrates how FAST system can be deployed for programmable deep tissue gene editing in both biological and biomedical contexts toward high precision and spatial specificity.
16.
Light-powered Escherichia coli cell division for chemical production.
-
Ding, Q
-
Ma, D
-
Liu, GQ
-
Li, Y
-
Guo, L
-
Gao, C
-
Hu, G
-
Ye, C
-
Liu, J
-
Liu, L
-
Chen, X
Abstract:
Cell division can perturb the metabolic performance of industrial microbes. The C period of cell division starts from the initiation to the termination of DNA replication, whereas the D period is the bacterial division process. Here, we first shorten the C and D periods of E. coli by controlling the expression of the ribonucleotide reductase NrdAB and division proteins FtsZA through blue light and near-infrared light activation, respectively. It increases the specific surface area to 3.7 μm-1 and acetoin titer to 67.2 g·L-1. Next, we prolong the C and D periods of E. coli by regulating the expression of the ribonucleotide reductase NrdA and division protein inhibitor SulA through blue light activation-repression and near-infrared (NIR) light activation, respectively. It improves the cell volume to 52.6 μm3 and poly(lactate-co-3-hydroxybutyrate) titer to 14.31 g·L-1. Thus, the optogenetic-based cell division regulation strategy can improve the efficiency of microbial cell factories.
17.
Optogenetic modulation of a catalytic biofilm for biotransformation of indole into tryptophan.
Abstract:
In green chemical synthesis, biofilms as biocatalysts have shown great promise. Efficient biofilm-mediated biocatalysis requires the modulation of biofilm formation. Optogenetic tools are ideal for controlling biofilms, as light is non-invasive, easily controllable and cost-efficient. In this study, we employed a near infrared (NIR) light-responsive gene circuit to modulate the cellular level of c-di-GMP, a central regulator of the prokaryote biofilm lifestyle, which allows us to regulate biofilm formation using NIR light. By applying the engineered biofilm to catalyze the biotransformation of indole into tryptophan in submerged biofilm reactors, we showed that NIR light enhanced biofilm formation to result in ~ 30% increase in tryptophan yield, which demonstrates the feasibility of applying light to modulate the formation and performance of catalytic biofilms for chemical production. The c-di-GMP targeted optogenetic approach for modulating catalytic biofilm we have demonstrated here would allow the wide application for further biofilm-mediated biocatalysis.
18.
Engineering a light-responsive, quorum quenching biofilm to mitigate biofouling on water purification membranes.
Abstract:
Quorum quenching (QQ) has been reported to be a promising approach for membrane biofouling control. Entrapment of QQ bacteria in porous matrices is required to retain them in continuously operated membrane processes and to prevent uncontrollable biofilm formation by the QQ bacteria on membrane surfaces. It would be more desirable if the formation and dispersal of biofilms by QQ bacteria could be controlled so that the QQ bacterial cells are self-immobilized, but the QQ biofilm itself still does not compromise membrane performance. In this study, we engineered a QQ bacterial biofilm whose growth and dispersal can be modulated by light through a dichromatic, optogenetic c-di-GMP gene circuit in which the bacterial cells sense near-infrared (NIR) light and blue light to adjust its biofilm formation by regulating the c-di-GMP level. We also demonstrated the potential application of the engineered light-responsive QQ biofilm in mitigating biofouling of water purification forward osmosis membranes. The c-di-GMP-targeted optogenetic approach for controllable biofilm development we have demonstrated here should prove widely applicable for designing other controllable biofilm-enabled applications such as biofilm-based biocatalysis.
19.
Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation.
Abstract:
The ability to control the activity of CRISPR-dCas9 with precise spatiotemporal resolution will enable tight genome regulation of user-defined endogenous genes for studying the dynamics of transcriptional regulation. Optogenetic devices with minimal phototoxicity and the capacity for deep tissue penetration are extremely useful for precise spatiotemporal control of cellular behavior and for future clinic translational research. Therefore, capitalizing on synthetic biology and optogenetic design principles, we engineered a far-red light (FRL)-activated CRISPR-dCas9 effector (FACE) device that induces transcription of exogenous or endogenous genes in the presence of FRL stimulation. This versatile system provides a robust and convenient method for precise spatiotemporal control of endogenous gene expression and also has been demonstrated to mediate targeted epigenetic modulation, which can be utilized to efficiently promote differentiation of induced pluripotent stem cells into functional neurons by up-regulating a single neural transcription factor, NEUROG2 This FACE system might facilitate genetic/epigenetic reprogramming in basic biological research and regenerative medicine for future biomedical applications.
20.
Bioprinting Living Biofilms through Optogenetic Manipulation.
Abstract:
In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living bacteria to autonomically form patterned biofilms following prescribed illumination. The results showed that through optogenetic manipulation, patterned bacterial communities with high spatial resolution (approximately 10 μm) could be constructed in 6 h. Thus, optogenetic manipulation greatly increases the range of available bioprinting techniques.
21.
Optogenetics reprogramming of planktonic cells for biofilm formation.
Abstract:
Single-cell behaviors play essential roles during early-stage biofilms formation. In this study, we evaluated whether biofilm formation could be guided by precisely manipulating single cells behaviors. Thus, we established an illumination method to precisely manipulate the type IV pili (TFP) mediated motility and microcolony formation of Pseudomonas aeruginosa by using a combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation and adaptive microscopy. We termed this method as Adaptive Tracking Illumination (ATI). We reported that ATI enables the precise manipulation of TFP mediated motility and microcolony formation during biofilm formation by manipulating bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) levels in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms can be controlled using ATI. Thus, the established method (i.e., ATI) can markedly promote ongoing studies of biofilms.
22.
Using Light-Activated Enzymes for Modulating Intracellular c-di-GMP Levels in Bacteria.
Abstract:
Signaling pathways involving second messenger c-di-GMP regulate various aspects of bacterial physiology and behavior. We describe the use of a red light-activated diguanylate cyclase (c-di-GMP synthase) and a blue light-activated c-di-GMP phosphodiesterase (hydrolase) for manipulating intracellular c-di-GMP levels in bacterial cells. We illustrate the application of these enzymes in regulating several c-di-GMP-dependent phenotypes, i.e., motility and biofilm phenotypes in E. coli and chemotactic behavior in the alphaproteobacterium Azospirillum brasilense. We expect these light-activated enzymes to be also useful in regulating c-di-GMP-dependent processes occurring at the fast timescale, for spatial control of bacterial populations, as well as for analyzing c-di-GMP-dependent phenomena at the single-cell level.
23.
Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.
-
Shao, J
-
Xue, S
-
Yu, G
-
Yu, Y
-
Yang, X
-
Bai, Y
-
Zhu, S
-
Yang, L
-
Yin, J
-
Wang, Y
-
Liao, S
-
Guo, S
-
Xie, M
-
Fussenegger, M
-
Ye, H
Abstract:
With the increasingly dominant role of smartphones in our lives, mobile health care systems integrating advanced point-of-care technologies to manage chronic diseases are gaining attention. Using a multidisciplinary design principle coupling electrical engineering, software development, and synthetic biology, we have engineered a technological infrastructure enabling the smartphone-assisted semiautomatic treatment of diabetes in mice. A custom-designed home server SmartController was programmed to process wireless signals, enabling a smartphone to regulate hormone production by optically engineered cells implanted in diabetic mice via a far-red light (FRL)-responsive optogenetic interface. To develop this wireless controller network, we designed and implanted hydrogel capsules carrying both engineered cells and wirelessly powered FRL LEDs (light-emitting diodes). In vivo production of a short variant of human glucagon-like peptide 1 (shGLP-1) or mouse insulin by the engineered cells in the hydrogel could be remotely controlled by smartphone programs or a custom-engineered Bluetooth-active glucometer in a semiautomatic, glucose-dependent manner. By combining electronic device-generated digital signals with optogenetically engineered cells, this study provides a step toward translating cell-based therapies into the clinic.
24.
Optogenetic Module for Dichromatic Control of c-di-GMP Signaling.
Abstract:
Many aspects of bacterial physiology and behavior including motility, surface attachment, and cell cycle, are controlled by the c-di-GMP-dependent signaling pathways on the scale of seconds-to-minutes. Interrogation of such processes in real time requires tools for introducing rapid and reversible changes in intracellular c-di-GMP levels. Inducing expression of genes encoding c-di-GMP synthetic (diguanylate cyclases) and degrading (c-di-GMP phosphodiesterase) enzymes by chemicals may not provide adequate temporal control. In contrast, light-controlled diguanylate cyclases and phosphodiesterases can be quickly activated and inactivated. A red/near-infrared light-regulated diguanylate cyclase, BphS, has been engineered earlier, yet a complementary light-activated c-di-GMP phosphodiesterase has been lacking. In search of such a phosphodiesterase, we investigated two homologous proteins from Allochromatium vinosum and Magnetococcus marinus, designated BldP, which contain C-terminal EAL-BLUF modules, where EAL is a c-di-GMP phosphodiesterase domain and BLUF is a blue light sensory domain. Characterization of the BldP proteins in Escherichia coli and in vitro showed that they possess light-activated c-di-GMP phosphodiesterase activities. Interestingly, light activation in both enzymes was dependent on oxygen levels. The truncated EAL-BLUF fragment from A. vinosum BldP lacked phosphodiesterase activity, whereas a similar fragment from M. marinus BldP, designated EB1, possessed such activity that was highly (>30-fold) upregulated by light. Following light withdrawal, EB1 reverted to the inactive ground state with a half-life of ∼6 min. Therefore, the blue light-activated phosphodiesterase, EB1, can be used in combination with the red/near-infrared light-regulated diguanylate cyclase, BphS, for bidirectional regulation of c-di-GMP-dependent processes in E. coli as well as other bacterial and nonbacterial cells.IMPORTANCE Regulation of motility, attachment to surfaces, cell cycle, and other bacterial processes controlled by the c-di-GMP signaling pathways occurs at a fast (seconds-to-minutes) pace. Interrogating these processes at high temporal and spatial resolution using chemicals is difficult-to-impossible, while optogenetic approaches may prove useful. We identified and characterized a robust, blue light-activated c-di-GMP phosphodiesterase (hydrolase) that complements a previously engineered red/near-infrared light-regulated diguanylate cyclase (c-di-GMP synthase). These two enzymes form a dichromatic module for manipulating intracellular c-di-GMP levels in bacterial and nonbacterial cells.
25.
Optogenetic manipulation of c-di-GMP levels reveals the role of c-di-GMP in regulating aerotaxis receptor activity in Azospirillum brasilense.
Abstract:
Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger, c-di-GMP, as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense, c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared light-regulated diguanylate cyclase and a blue-light regulated c-di-GMP phosphodiesterase. It allows generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the timescale of chemotaxis signaling. We provide experimental evidence that c-di-GMP binding to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense changes with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state.IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and modulates their contribution to the overall chemotaxis response. Here, we used an optogenetic system to perturb intracellular concentrations of the bacterial second messenger, c-di-GMP, to show that in some chemotaxis receptors, c-di-GMP functions in a similar feedback loop to connect metabolic status of the cells to sensory activity of chemotaxis receptors.