Showing 26 - 50 of 257 results
26.
Opticool: Cutting-edge transgenic optical tools.
Abstract:
Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
27.
Synthetic Biology Meets Ca2+ Release-Activated Ca2+ Channel-Dependent Immunomodulation.
Abstract:
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
28.
Dynamic Light-Induced Protein Patterns at Model Membranes.
Abstract:
The precise localization and activation of proteins at the cell membrane at a certain time gives rise to many cellular processes, including cell polarization, migration, and division. Thus, methods to recruit proteins to model membranes with subcellular resolution and high temporal control are essential when reproducing and controlling such processes in synthetic cells. Here, a method is described for fabricating light-regulated reversible protein patterns at lipid membranes with high spatiotemporal precision. For this purpose, we immobilize the photoswitchable protein iLID (improved light-inducible dimer) on supported lipid bilayers (SLBs) and on the outer membrane of giant unilamellar vesicles (GUVs). Upon local blue light illumination, iLID binds to its partner Nano (wild-type SspB) and allows the recruitment of any protein of interest (POI) fused to Nano from the solution to the illuminated area on the membrane. This binding is reversible in the dark, which provides dynamic binding and release of the POI. Overall, this is a flexible and versatile method for regulating the localization of proteins with high precision in space and time using blue light.
29.
Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility.
Abstract:
Endogenous biomolecular condensates, composed of a multitude of proteins and RNAs, can organize into multiphasic structures with compositionally distinct phases. This multiphasic organization is generally understood to be critical for facilitating their proper biological function. However, the biophysical principles driving multiphase formation are not completely understood. Here we use in vivo condensate reconstitution experiments and coarse-grained molecular simulations to investigate how oligomerization and sequence interactions modulate multiphase organization in biomolecular condensates. We demonstrate that increasing the oligomerization state of an intrinsically disordered protein results in enhanced immiscibility and multiphase formation. Interestingly, we find that oligomerization tunes the miscibility of intrinsically disordered proteins in an asymmetric manner, with the effect being more pronounced when the intrinsically disordered protein, exhibiting stronger homotypic interactions, is oligomerized. Our findings suggest that oligomerization is a flexible biophysical mechanism that cells can exploit to tune the internal organization of biomolecular condensates and their associated biological functions.
30.
Simple visualization of submicroscopic protein clusters with a phase-separation-based fluorescent reporter.
-
Mumford, TR
-
Rae, D
-
Brackhahn, E
-
Idris, A
-
Gonzalez-Martinez, D
-
Pal, AA
-
Chung, MC
-
Guan, J
-
Rhoades, E
-
Bugaj, LJ
Abstract:
Protein clustering plays numerous roles in cell physiology and disease. However, protein oligomers can be difficult to detect because they are often too small to appear as puncta in conventional fluorescence microscopy. Here, we describe a fluorescent reporter strategy that detects protein clusters with high sensitivity called CluMPS (clusters magnified by phase separation). A CluMPS reporter detects and visually amplifies even small clusters of a binding partner, generating large, quantifiable fluorescence condensates. We use computational modeling and optogenetic clustering to demonstrate that CluMPS can detect small oligomers and behaves rationally according to key system parameters. CluMPS detected small aggregates of pathological proteins where the corresponding GFP fusions appeared diffuse. CluMPS also detected and tracked clusters of unmodified and tagged endogenous proteins, and orthogonal CluMPS probes could be multiplexed in cells. CluMPS provides a powerful yet straightforward approach to observe higher-order protein assembly in its native cellular context. A record of this paper's transparent peer review process is included in the supplemental information.
31.
Interplay of condensation and chromatin binding underlies BRD4 targeting.
-
Strom, AR
-
Eeftens, JM
-
Polyachenko, Y
-
Weaver, CJ
-
Watanabe, HF
-
Bracha, D
-
Orlovsky, ND
-
Jumper, CC
-
Jacobs, WM
-
Brangwynne, CP
Abstract:
Nuclear compartments form via biomolecular phase separation, mediated through multivalent properties of biomolecules concentrated within condensates. Certain compartments are associated with specific chromatin regions, including transcriptional initiation condensates, which are composed of transcription factors and transcriptional machinery, and form at acetylated regions including enhancer and promoter loci. While protein self-interactions, especially within low-complexity and intrinsically disordered regions, are known to mediate condensation, the role of substrate-binding interactions in regulating the formation and function of biomolecular condensates is under-explored. Here, utilizing live-cell experiments in parallel with coarse-grained simulations, we investigate how chromatin interaction of the transcription factor BRD4 modulates its condensate formation. We find that both kinetic and thermodynamic properties of BRD4 condensation are affected by chromatin binding: nucleation rate is sensitive to BRD4-chromatin interactions, providing an explanation for the selective formation of BRD4 condensates at acetylated chromatin regions, and thermodynamically, multivalent acetylated chromatin sites provide a platform for BRD4 clustering below the concentration required for off-chromatin condensation. This provides a molecular and physical explanation of the relationship between nuclear condensates and epigenetically modified chromatin that results in their mutual spatiotemporal regulation, suggesting that epigenetic modulation is an important mechanism by which the cell targets transcriptional condensates to specific chromatin loci.
32.
Using split protein reassembly strategy to optically control PLD enzymatic activity.
-
Yao, Y
-
Lou, X
-
Jianxu, L
-
Zhu, M
-
Qian, X
-
Liu, J
-
Zhang, L
-
Zhang, P
-
He, L
-
Li, H
-
Xu, Y
Abstract:
Phospholipase D (PLD) and phosphatidic acid (PA) play a spatio-temporal role in regulating diverse cellular activities. Although current methodologies enable optical control of the subcellular localization of PLD and by which influence local PLD enzyme activity, the overexpression of PLD elevates the basal PLD enzyme activity and further leads to increased PA levels in cells. In this study, we employed a split protein reassembly strategy and optogenetic techniques to modify superPLD (a PLDPMF variant with a high basal activity). We splited this variants into two HKD domains and fused these domains with optogenetic elements and by which we achieved light-mediated dimerization of the two HKD proteins and then restored the PLD enzymatic activity.
33.
Ultralow Background Membrane Editors for Spatiotemporal Control of Phosphatidic Acid Metabolism and Signaling
Abstract:
Phosphatidic acid (PA) is a multifunctional lipid with important metabolic and signaling functions, and efforts to dissect its pleiotropy demand strategies for perturbing its levels with spatiotemporal precision. Previous membrane editing approaches for generating local PA pools used light-mediated induced proximity to recruit a PA-synthesizing enzyme, phospholipase D (PLD), from the cytosol to the target organelle membrane. Whereas these optogenetic PLDs exhibited high activity, their residual activity in the dark led to undesired chronic lipid production. Here, we report ultralow background membrane editors for PA wherein light directly controls PLD catalytic activity, as opposed to localization and access to substrates, exploiting a light–oxygen–voltage (LOV) domain-based conformational photoswitch inserted into the PLD sequence and enabling their stable and nonperturbative targeting to multiple organelle membranes. By coupling organelle-targeted LOVPLD activation to lipidomics analysis, we discovered different rates of metabolism for PA and its downstream products depending on the subcellular location of PA production. We also elucidated signaling roles for PA pools on different membranes in conferring local activation of AMP-activated protein kinase signaling. This work illustrates how membrane editors featuring acute, optogenetic conformational switches can provide new insights into organelle-selective lipid metabolic and signaling pathways.
34.
Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag.
Abstract:
Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function—dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles, a major question in cell biology and drug development. Here we report an optogenetic approach to selectively dissolve a condensate of interest in a reversible and spatially controlled manner. We show that light-gated recruitment of maltose-binding protein (MBP), a commonly used solubilizing domain in protein purification, results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP, showing that disrupting condensation of the oncogenic fusion protein FUS-CHOP results in reversion of FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.
35.
Optical sensing and control of T cell signaling pathways.
Abstract:
T cells regulate adaptive immune responses through complex signaling pathways mediated by T cell receptor (TCR). The functional domains of the TCR are combined with specific antibodies for the development of chimeric antigen receptor (CAR) T cell therapy. In this review, we first overview current understanding on the T cell signaling pathways as well as traditional methods that have been widely used for the T cell study. These methods, however, are still limited to investigating dynamic molecular events with spatiotemporal resolutions. Therefore, genetically encoded biosensors and optogenetic tools have been developed to study dynamic T cell signaling pathways in live cells. We review these cutting-edge technologies that revealed dynamic and complex molecular mechanisms at each stage of T cell signaling pathways. They have been primarily applied to the study of dynamic molecular events in TCR signaling, and they will further aid in understanding the mechanisms of CAR activation and function. Therefore, genetically encoded biosensors and optogenetic tools offer powerful tools for enhancing our understanding of signaling mechanisms in T cells and CAR-T cells.
36.
Light-based juxtacrine signaling between synthetic cells.
Abstract:
Cell signaling through direct physical cell-cell contacts plays vital roles in biology during development, angiogenesis, and immune response. Intercellular communication mechanisms between synthetic cells constructed from the bottom up are majorly reliant on diffusible chemical signals, thus limiting the range of responses in receiver cells. Engineering contact-dependent signaling between synthetic cells promises to unlock more complicated signaling schemes with different types of responses. Here, we design and demonstrate a light-activated contact-dependent communication tool for synthetic cells. We utilize a split bioluminescent protein to limit signal generation exclusively to contact interfaces of synthetic cells, driving the recruitment of a photoswitchable protein in receiver cells, akin to juxtacrine signaling in living cells. Our modular design not only demonstrates contact-dependent communication between synthetic cells but also provides a platform for engineering orthogonal contact-dependent signaling mechanisms.
37.
Nano-optogenetic CAR-T Cell Immunotherapy.
Abstract:
Chimeric antigen receptor (CAR)-T cell immunotherapy emerges as an effective cancer treatment. However, significant safety concerns remain, such as cytokine release syndrome (CRS) and "on-target, off-tumor" cytotoxicity, due to a lack of precise control over conventional CAR-T cell activity. To address this issue, a nano-optogenetic approach has been developed to enable spatiotemporal control of CAR-T cell activity. This system is comprised of synthetic light-sensitive CAR-T cells and upconversion nanoparticles acting as an in situ nanotransducer, allowing near-infrared light to wirelessly control CAR-T cell immunotherapy.
38.
Controlling the Subcellular Localization of Signaling Proteins Using Chemically Induced Dimerization and Optogenetics.
Abstract:
A given protein can perform numerous roles in a cell with its participation in protein complexes and distinct localization within the cell playing a critical role in its diverse functions. Thus, the ability to artificially dimerize proteins and recruit proteins to specific locations in a cell has become a powerful tool for the investigation of protein function and the understanding of cell biology. Here, we discuss two systems that have been used to activate signal transduction pathways, a chemically inducible dimerization (CID) and a light-inducible (LI) system to control signaling and cytoskeletal regulation in a spatial and temporal manner.
39.
Spatiotemporal Optical Control of Gαq-PLCβ Interactions.
Abstract:
Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with broad physiological and pathological significance. Compared with other Gα members, GαqGTP activates many crucial effectors, including PLCβ (Phospholipase Cβ) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCβ regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal-debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCβ signaling controls cellular physiology has been difficult. Since activated PLCβ induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCβ interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCβ signaling control, our data indicate that the molecular competition between RhoGEFs and PLCβ for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.
40.
Photoactivation of LOV domains with chemiluminescence.
Abstract:
Optogenetics has opened new possibilities in the remote control of diverse cellular functions with high spatiotemporal precision using light. However, delivering light to optically non-transparent systems remains a challenge. Here, we describe the photoactivation of light-oxygen-voltage-sensing domains (LOV domains) with in situ generated light from a chemiluminescence reaction between luminol and H2O2. This activation is possible due to the spectral overlap between the blue chemiluminescence emission and the absorption bands of the flavin chromophore in LOV domains. All four LOV domain proteins with diverse backgrounds and structures (iLID, BcLOV4, nMagHigh/pMagHigh, and VVDHigh) were photoactivated by chemiluminescence as demonstrated using a bead aggregation assay. The photoactivation with chemiluminescence required a critical light-output below which the LOV domains reversed back to their dark state with protein characteristic kinetics. Furthermore, spatially confined chemiluminescence produced inside giant unilamellar vesicles (GUVs) was able to photoactivate proteins both on the membrane and in solution, leading to the recruitment of the corresponding proteins to the GUV membrane. Finally, we showed that reactive oxygen species produced by neutrophil like cells can be converted into sufficient chemiluminescence to recruit the photoswitchable protein BcLOV4-mCherry from solution to the cell membrane. The findings highlight the utility of chemiluminescence as an endogenous light source for optogenetic applications, offering new possibilities for studying cellular processes in optically non-transparent systems.
41.
Unlocking the potential of optogenetics in microbial applications.
Abstract:
Optogenetics is a powerful approach that enables researchers to use light to dynamically manipulate cellular behavior. Since the first published use of optogenetics in synthetic biology, the field has expanded rapidly, yielding a vast array of tools and applications. Despite its immense potential for achieving high spatiotemporal precision, optogenetics has predominantly been employed as a substitute for conventional chemical inducers. In this short review, we discuss key features of microbial optogenetics and highlight applications for understanding biology, cocultures, bioproduction, biomaterials, and therapeutics, in which optogenetics is more fully utilized to realize goals not previously possible by other methods.
42.
A single-component, light-assisted uncaging switch for endoproteolytic release.
-
Cui, M
-
Lee, S
-
Ban, SH
-
Ryu, JR
-
Shen, M
-
Yang, SH
-
Kim, JY
-
Choi, SK
-
Han, J
-
Kim, Y
-
Han, K
-
Lee, D
-
Sun, W
-
Kwon, HB
-
Lee, D
Abstract:
Proteases function as pivotal molecular switches, initiating numerous biological events. Notably, potyviral protease, derived from plant viruses, has emerged as a trusted proteolytic switch in synthetic biological circuits. To harness their capabilities, we have developed a single-component photocleavable switch, termed LAUNCHER (Light-Assisted UNcaging switCH for Endoproteolytic Release), by employing a circularly permutated tobacco etch virus protease and a blue-light-gated substrate, which are connected by fine-tuned intermodular linkers. As a single-component system, LAUNCHER exhibits a superior signal-to-noise ratio compared with multi-component systems, enabling precise and user-controllable release of payloads. This characteristic renders LAUNCHER highly suitable for diverse cellular applications, including transgene expression, tailored subcellular translocation and optochemogenetics. Additionally, the plug-and-play integration of LAUNCHER into existing synthetic circuits facilitates the enhancement of circuit performance. The demonstrated efficacy of LAUNCHER in improving existing circuitry underscores its significant potential for expanding its utilization in various applications.
43.
Critical capillary waves of biomolecular condensates.
Abstract:
Membraneless compartments known as biomolecular condensates are thought to form through liquid-liquid phase separation (LLPS). When forces are applied to the fluid interfaces of these condensates, surface fluctuation are generated, a phenomenon known as capillary waves. The spatiotemporal dynamics of these fluctuations, characterized by the amplitude and velocity, reflect the physical properties of condensates. Moreover, unraveling the nature of fluctuations near the critical point is crucial for understanding the universal physical underpinnings of phase transitions. Although fluid condensate interfaces are ubiquitous within living cells, little is known about their surface fluctuations. Here, we quantify the interface fluctuations of light-induced synthetic and endogenous nuclear condensates, including nucleoli and nuclear speckles, in real and Fourier space. Measured fluctuations align with a theory assuming thermal driving, which enables measurement of surface tension and effective viscosity. The surface tensions fall within the range of 10−6 to 10−5 N/m for all tested condensates; in contrast, we find significant difference of fluctuation velocities, highlighting much higher viscosity of nucleoli ∼ 104 Pa·s, compared to synthetic condensates and nuclear speckles. We further find that the interface fluctuations become enhanced and slower as the system nears the critical point. These findings elucidate key aspects of intracellular condensate properties, and suggest that the critical trend of surface tension is more consistent with theoretical predictions by the mean-field model than those by the 3D Ising model.
44.
Optogenetics in Alzheimer's Disease: Focus on Astrocytes.
Abstract:
Alzheimer's disease (AD) is the most common form of dementia, resulting in disability and mortality. The global incidence of AD is consistently surging. Although numerous therapeutic agents with promising potential have been developed, none have successfully treated AD to date. Consequently, the pursuit of novel methodologies to address neurodegenerative processes in AD remains a paramount endeavor. A particularly promising avenue in this search is optogenetics, enabling the manipulation of neuronal activity. In recent years, research attention has pivoted from neurons to glial cells. This review aims to consider the potential of the optogenetic correction of astrocyte metabolism as a promising strategy for correcting AD-related disorders. The initial segment of the review centers on the role of astrocytes in the genesis of neurodegeneration. Astrocytes have been implicated in several pathological processes associated with AD, encompassing the clearance of β-amyloid, neuroinflammation, excitotoxicity, oxidative stress, and lipid metabolism (along with a critical role in apolipoprotein E function). The effect of astrocyte-neuronal interactions will also be scrutinized. Furthermore, the review delves into a number of studies indicating that changes in cellular calcium (Ca2+) signaling are one of the causes of neurodegeneration. The review's latter section presents insights into the application of various optogenetic tools to manipulate astrocytic function as a means to counteract neurodegenerative changes.
45.
Local negative feedback of Rac activity at the leading edge underlies a pilot pseudopod-like program for amoeboid cell guidance.
Abstract:
To migrate efficiently, neutrophils must polarize their cytoskeletal regulators along a single axis of motion. This polarization process is thought to be mediated through local positive feedback that amplifies leading edge signals and global negative feedback that enables sites of positive feedback to compete for dominance. Though this two-component model efficiently establishes cell polarity, it has potential limitations, including a tendency to "lock" onto a particular direction, limiting the ability of cells to reorient. We use spatially defined optogenetic control of a leading edge organizer (PI3K) to probe how neutrophil-like HL-60 cells balance "decisiveness" needed to polarize in a single direction with the flexibility needed to respond to new cues. Underlying this balancing act is a local Rac inhibition process that destabilizes the leading edge to promote exploration. We show that this local inhibition enables cells to process input signal dynamics, linking front stability and orientation to local temporal increases in input signals.
46.
CaaX-motif-adjacent residues influence G protein gamma (Gγ) prenylation under suboptimal conditions.
Abstract:
Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation. Pharmacological inhibition of the lipid synthesis pathway by statins is a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential inhibition. We examined the prenylation of carboxy-terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to prenylation and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide, statin sensitivity, and extent of prenylation. Our results also show a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings indicate a plausible mechanism allowing for statins to differentially perturb heterotrimeric G protein signaling in cells depending on their Gγ-subtype composition. Our results may also provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.
47.
ActuAtor, a Listeria-inspired molecular tool for physical manipulation of intracellular organizations through de novo actin polymerization.
-
Nakamura, H
-
Rho, E
-
Lee, CT
-
Itoh, K
-
Deng, D
-
Watanabe, S
-
Razavi, S
-
Matsubayashi, HT
-
Zhu, C
-
Jung, E
-
Rangamani, P
-
Watanabe, S
-
Inoue, T
Abstract:
Form and function are often interdependent throughout biology. Inside cells, mitochondria have particularly attracted attention since both their morphology and functionality are altered under pathophysiological conditions. However, directly assessing their causal relationship has been beyond reach due to the limitations of manipulating mitochondrial morphology in a physiologically relevant manner. By engineering a bacterial actin regulator, ActA, we developed tools termed "ActuAtor" that inducibly trigger actin polymerization at arbitrary subcellular locations. The ActuAtor-mediated actin polymerization drives striking deformation and/or movement of target organelles, including mitochondria, Golgi apparatus, and nucleus. Notably, ActuAtor operation also disperses non-membrane-bound entities such as stress granules. We then implemented ActuAtor in functional assays, uncovering the physically fragmented mitochondria being slightly more susceptible to degradation, while none of the organelle functions tested are morphology dependent. The modular and genetically encoded features of ActuAtor should enable its application in studies of the form-function interplay in various intracellular contexts.
48.
Light-activated microtubule-based two-dimensional active nematic.
Abstract:
We assess the ability of two light responsive kinesin motor clusters to drive dynamics of microtubule-based active nematics: opto-K401, a processive motor, and opto-K365, a non-processive motor. Measurements reveal an order of magnitude improvement in the contrast of nematic flow speeds between maximally- and minimally-illuminated states for opto-K365 motors when compared to opto-K401 construct. For opto-K365 nematics, we characterize both the steady-state flow and defect density as a function of applied light. We also examine the transient behavior as the system switches between steady-states upon changes in light intensities. Although nematic flows reach a steady state within tens of seconds, the defect density exhibits transient behavior for up to 10 minutes, showing a separation between small-scale active flows and system-scale structural states. Our work establishes an experimental platform that can exploit spatiotemporally-heterogeneous patterns of activity to generate targeted dynamical states.
49.
Control of cell retraction and protrusion with a single protein.
Abstract:
The ability of a single protein to trigger different functions is an assumed key feature of cell signaling, yet there are very few examples demonstrating it. Here, using an optogenetic tool to control membrane localization of RhoA nucleotide exchange factors (GEFs), we present a case where the same protein can trigger both protrusion and retraction when recruited to the plasma membrane, polarizing the cell in two opposite directions. We show that the basal concentration of the GEF prior to activation predicts the resulting phenotype. A low concentration leads to retraction, whereas a high concentration triggers protrusion. This unexpected protruding behavior arises from the simultaneous activation of Cdc42 by the GEF and inhibition of RhoA by the PH domain of the GEF at high concentrations. We propose a minimal model that recapitulates the phenotypic switch, and we use its predictions to control the two phenotypes within selected cells by adjusting the frequency of light pulses. Our work exemplifies a unique case of control of antagonist phenotypes by a single protein that switches its function based on its concentration or dynamics of activity. It raises numerous open questions about the link between signaling protein and function, particularly in contexts where proteins are highly overexpressed, as often observed in cancer.
50.
Quantitative insights in tissue growth and morphogenesis with optogenetics.
Abstract:
Cells communicate with each other to jointly regulate cellular processes during cellular differentiation and tissue morphogenesis. This multiscale coordination arises through spatiotemporal activity of morphogens to pattern cell signaling and transcriptional factor activity. This coded information controls cell mechanics, proliferation, and differentiation to shape the growth and morphogenesis of organs. While many of the molecular components and physical interactions have been identified in key model developmental systems, there are still many unresolved questions related to the dynamics involved due to challenges in precisely perturbing and quantitatively measuring signaling dynamics. Recently, a broad range of synthetic optogenetic tools have been developed and employed to quantitatively define relationships between signal transduction and downstream cellular responses. These optogenetic tools can control intracellular activities at the single cell or whole tissue scale to direct subsequent biological processes. In this brief review, we highlight a selected set of studies that develop and implement optogenetic tools to unravel quantitative biophysical mechanisms for tissue growth and morphogenesis across a broad range of biological systems through the manipulation of morphogens, signal transduction cascades, and cell mechanics. More generally, we discuss how optogenetic tools have emerged as a powerful platform for probing and controlling multicellular development.